AD

AFWAL-TR-81-3041 **VOLUME 2**

EFFECT OF VARIANCES AND ∞ MANUFACTURING TOLERANCES ON THE ು DESIGN STRENGTH AND LIFE OF **™** MECHANICALLY FASTENED **COMPOSITE JOINTS**

VOLUME 2 - TEST DATA, EQUIPMENT AND PROCEDURES

S.P. Garbo, J.M. Ogonowski, and H.E. Reiling, Jr.

McDonnell Aircraft Company McDonnell Douglas Corporation P.O. Box 516 St. Louis, Missouri 63166

April 1981

Final Report for Period 15 February 1978 - 15 April 1981

Approved for public release; distribution unlimited

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND **WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433**

JUL 21 1981

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawing, specifications, or other data, is not be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs, (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ROBERT L. GALLO, Capt, USAF

Project Engineer

DAVEY L. SMITH, Chief

Structural Integrity Branch
Structures and Dynamics Division

FOR THE COMMANDER

RALPH L. KUSTER, Jr., Col, USAF

Chief, Structures and Dynamics Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/FIBEC, Wright-Patterson AFB, OH 45433 to help us maintain a current mailing list. Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/1 July 1981 - 500

	12/145
SECURITY CHASSIFICATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
	BEFORE COMPLETING FORM IN NO. 3 RECIBIENT'S CATALOG NUMBER
EFFECT OF VARIANCES AND MANUFACTURING TOLERANCE ON THE DESIGN STRENGTH AND LIFE OF MECHANICALLY FASTENED COMPOSITE JOINTS VOLUME 2 TOSAL DOTAL EQUILORES OF GIRLS	TY 8 - 15 Apr 81 The state of the state
Procedures. J. M. /Ogonowski H. R. /Reiling, Jr	F33615-77-C-3140
PERFORMUS OF THE PROPERTY OF T	PROGRAM ELEMENT PROJECT TASI AREA & WORK UNIT NUMBERS P.E. 62201F W.U. 24010110
Flight Dynamics Laboratory (AFWAL/FIBEC) Air Force Wright Aeronautical Lab. AFSC Wright-Patterson AFB, Ohio 45433	Apr 81 13 NUMBER OF PAGES 135
14 MONITORING AGENCY NAME & ADDRESSELL different from Controlling Offi	Unclassified 15. DECLASSIFICATION DOWNGRADING SCHOOLE
17 DISTRIBUTION ST. IENT or the abstract entered in Block 20 H differen	ant from Report
18 SUPPLEMENTARY TEG	
19 KEY WORDS (Continue on reverse aidm it recessary and identify by block nor Bolted Joints Methodology Composite Load Distributions Graphite-epoxy Stress Analysis Orthotropic Failure Criteria Stress Concentrations Fatigue Life	*
20. ABSTRACT (Continue on reverse side it necessary and identify by block num - The subject of this program was structural fastened composite joints. Program objectives and verification by test of improved static structural evaluation of the effects of manufacture strength; and (3) experimental evaluation of joints.	al evaluation of mechanically s were threefold: (1) developme crength methodology, (2) experi cing anomalies on joint static

DD 1 FORM 1473

Program activities to accomplish these objectives were organized under five tasks. Under Task 1 - Literature Survey, a survey was performed to determine the state-of-the-art in design and analysis of bolted composite joints. Experimental evaluations of joint static strength were performed under Tasks 2 and 3. In Task 2 - Evaluation of Joint Design Variables, strength data were obtained through an experimental program to evaluate the effects of twelve joint design variables, the Task 3 - Evaluation of Manufacturing and Service Anomalies, effects of seven, anomalies on joint strength were evaluated experimentally and compared with Task 3 strength data. Bolted composite joint durability was evaluated under Task 4 - Evaluation of Critical Joint Design Variables On Fatigue Life. Seven critical design variables or manufacturing anomalies were identified based on Task 2 and 3 strength data. Under Task 5 - Final Analyses and Correlation, required data reduction, methodology development

This report documents all program activities performed under Tasks 2, 3, 4 and 5. Activities performed under Task 1 - Literature Survey, were previously reported in AFFDL-TR-78-179. Static strength methodology and evaluations of joint static and fatigue test data are reported. Analytic studies complement methodology development and illustrate: the need for detailed stress analysis, the utility of the developed "Bolted Joint Stress Field Model" (BJSFM) procedure, and define model limitations. For static strength data, correlations with analytic predictions are included. Data trends in all cases are discussed relative to joint strength and failure mode. For joint fatigue studies, data trends are discussed relative to life, hole elongation, and failure mode behavior.

This final report is organized in the following three volumes:

Volume 1 - Methodology Development and Data Evaluation

and correlation, and necessary documentation were performed.

Volume 2 - Test Data, Equipment an' Procedures

with the same of t

Volume 3 - Bolted Joint Stress Field Model (BJSFM) Computer Program User's Manual

FOREWORD

The 'work reported herein was performed by the McDonnell Aircraft Company (MCAIR) of the McDonnell Douglas Corporation (MDC), St. Louis, Missouri, under Air Force Contract F33615-77-C-3140, for the Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. This effort was conducted under Project No. 2401 "Structural Mechanics", Task 240101 " Structural Integrity for Military Aerospace Vehicles", Work Unit 24010110 "Effect of Variances and Manufacturing Tolerances on the Design Strength and Life of Mechanically Fastened Composite Joints". The Air Force Project Engineer at contract go-ahead was Mr. Roger J. Aschenbrenner (AFWAL/FIBEC); in December 1979, Capt. Robert L. Gallo (AFWAL/FIBEC) assumed this assignment. The work described was conducted during the period 15 February 1978 through 15 April 1981.

Program Manager was Mr. Ramon A. Garrett, Branch Chief Technology, MCAIR Structural Research Department. Principal Investigator was Mr. Samual P. Garbo, MCAIR Structural Research Department.

Acces	sien For	
NTIS	GRARI	
DITTC	TAB	Ō
Unann	ieume∉d	
Justi	fication	
Avai	lability	
	Avail and	
Dist	Special	•

TABLE OF CONTENTS

Secti	<u>on</u>	Page
I	INTRODUCTION	1
11	RESULTS OF TASK 2 TESTING - JOINT DESIGN	
	VARIABLES	2
	1. TEST MATRIX AND TEST OBJECTIVES	2
	2. SPECIMEN CONFIGURATIONS	2
	3. SPECIMEN QUALITY ASSURANCE	11
	4. PANEL FABRICATION	11
	5. SPECIMEN FABRICATION	13
	6. TEST PROCEDURES	13
	7. TEST EQUIPMENT	14
	8. SPECIAL PROCEDURES	18
	9. TEST DATA	18
	J. IDDI DAIA	10
III	RESULTS OF TASK 3 TESTING - MANUFACTURING AND	
	SERVICE ANOMALIES	69
	1. TEST MATRIX AND TEST OBJECTIVES	69
	2. SPECIMEN CONFIGURATIONS	69
	3. SPECIMEN QUALITY ASSURANCE	69
	4. PANEL FABRICATION	73
		74
	6. TEST PROCEDURES	74
		75
	8. SPECIAL PROCEDURES	75
	9. TEST DATA	85
IV	RESULTS OF TASK 4 TESTING - CRITICAL JOINT	
	DESIGN VARIABLES ON FATIGUE LIFE	99
	1. TASK 4 - TEST MATRIX AND TEST OBJECTIVE	99
	2. SPECIMEN CONFIGURATION	101
	3. SPECIMEN QUALITY ASSURANCE	101
	4. PANEL FABRICATION	101
	5. SPECIMEN FABRICATION	101
		104
	6. TEST PROCEDURES	
	7. TEST EQUIPMENT	107
	8. SPECIAL PROCEDURES	107
	50 1000 Sect 1100000	1 4 1 1 1

LIST OF LLUSTRATIONS

Figure		Page
1	Task 2 - Joint Design Variables Test Matrix	3
2	Baseline Specimen Configuration	5
3	Single-Test Specimens	6
4	Multi-Test Specimens	9
5	Panel Configurations	12
6	Double Shear Test Setup	15
7	Environmental Exposure Schedule	16
8	Load-Interaction Test Setup	17
9	Exploded View of Salt Spray Exposure Test Setup After Exposure	19
10	Single Fastener Test Setups	28
11	Bearing Mode of Failure	3.1
12	Bearing Mode of Failure (40 Ply)	35
13	Bearing-Shearout Mode of Failure	36
14	Rearing-Shearout Mode of Failure	37
15	Bearing-Shearout Mode of Failure (10° Off Axis Test)	38
16	Shearout-Tension-Cleavage Mode of Failure (22.5° Off Axis Test)	39
17	Bearing-Shearout-Tension-Cleavage Mode of Failure (45° Off Axis Test)	40
18	Shearout-Tension-Cleavage Mode of Failure (67.5° Off Axis Test)	41
19	Shearout-Tension-Cleavage Mode of Failure (80° Off Axis Test)	42
20	Bearing-Net Section Mode of Failure	43

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
21	Multiple Fastener Test Setups	57
22	Net Section Mode of Failure	63
23	Bearing-Shearout Mode of Failure	64
24	Bearing (Compression Test) Mode of Failure	65
25	Fastener Pattern Tension Test Specimens After Testing	66
26	Tension-Cleavage Mode of Failure	67
27	Load Interaction Tension Net Section Failures (45° Off Axis Test)	68
28	Task 3 - Evaluation of Manufacturing Anomalies - Test Matrix	70
29	Task 3 Test Specimens	71
30	Panel Configurations	73
31	Average Moisture Content for Task 3 Specimens	7 5
32	Hole Drilling Anomalies	76
33	Severe Porosity in Test Specimen Indicated by Photomicrographs	78
34	Moderate Porosity in Test Specimen Indicated by Photomicrographs	79
35	Freeze-Thaw Exposure Profile	80
36	Photomicrographic Results of 0.0072 Inch Interference Fit	81
37	Photomicrographic Results of 0.0053 Inch Interference Fit	82
38	Photomicrographic Results of 0.0043 Inch Interference Fit	83
39	Photomicrographic Results of 0.0030 Inch Interference Fit	84
40	Illtraconic "C"-Scane of Most Specimen Anomalics	96

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
41	Task 3 Test Setups	93
4.:	Tension-Cleavage Mode of Failure	95
43	Bearing-Shearout Mode of Failure	96
44	Bearing-Shearout Mode of Faiture	97
1.	Bearing-Shearout Mode of Failure	98
1.	Task 4 - Evaluation of Critical Joint Design Parameters on Fatigue Life - Test Matrix	99
••	Fatique Test Specimens	102
41	Panel Configurations	103
40	Measured Mix-Truncated Spectrum	106
50	Task 4 Environmental Exposure Schedule	107
ς.	Thermal Spike Cycle	108
4.7	Task 4 Test Setups	113
; ,	Static Not Section and Tension-Cleavage Modes of Figure	117
	Status Pearing and Shearout Modes of Failure	115
7	Constant Amplitude (R = 0.1) Tension-Cleavage and Shoorout Modes of Pailure	11/5
• 1	Constant Amplitude (R = 0.1) searing and Tension Cleavage Modes of Malure	128
`) /	Constant Amplitude (R = 0.1) Net Section and Tension-Cleavage Modes of Failure	120
ε _{γ.}	Constant Amplitude (R = -1.0) Bearing Modes of Friture	130
ι, γ	Spectrum Fatique Bearing and Bearing-Shearout Modes of Pailing	135

LIST OF TABLES

<u>Table</u>		Page
1	Tension Strength Test Data	20
2	Compression Strength Test Data	26
3	Tension Strength Test Data	44
4	Compression Strength Test Data	52
5	Load Interaction Strength Test Data	56
6	Nonstandard Panel Fabrication Procedures	77
7	Tension Strength Test Data	87
8	Compression Strength Test Data	91
9	Distribution of Hours and Exceedances	105
10	Static Tension Strength Test Data	11.0
11	Constant Amplitude Fatigue Test Data	119
12	Spectrum Fatigue Test Data	1,31

SECTION I

INTRODUCTION

The chjective of the five task program was to develop and verify improved methods for predicting static strength and to experimentally evaluate the durability of bolted composite joints. This volume summarizes the procedures and equipment used to conduct the experimental verification program associated with: Task 2 - Evaluation of Joint Design Variables, Task 3 - Evaluation of Manufacturing and Service Anomalies and Task 4 - Evaluation of Critical Joint Design Variables on Fatigue Life.

Results of all testing are tabulated and representative photographs of specimen failures included. The body of this document is divided into the following sections for each task:

- 1. Test Matrix and Test Objectives
- 2. Specimen Configurations
- 3. Specimen Quality Assurance
- 4. Panel Fabrication
- 5. Specimen Fabrication
- 6. Test Procedures
- 7. Test Equipment Used
- 8. Special Procedures
- 9. Test Data

SECTION II

RESULTS OF TASK 2 TESTING - JOINT DESIGN VARIABLES

1. TEST MATRIX AND TEST OBJECTIVES - The objective of Task 2 was to obtain strength data for application-oriented bolted composite joints through an experimental test program. The experimental program to evaluate the effect of twelve design variables on laminate static strength is summarized in Figure 1.

This test matrix defines numbers and types of tests, design variables studied and number of specimens tested. The test matrix was textured to eliminate unnecessary combinations of load and environmental conditions. Tests were performed at three environmental conditions for selected joint design variables; room temperature dry (RTD), room temperature wet (RTW) and elevated temperature wet (ETW). Elevated temperature testing at 250°F and specimen moisture content of approximately .86 percent by weight were selected as representative of structural environments for near term multi-mission high performance fighter aircraft. A replication of four tests were performed for each design variable for a total of 428 tests in Task 2.

All joints tested in Task 2 were a variation of the baseline configuration presented in Figure 2. The two-bolt-in-tandem configuration complements existing pure bearing load-transfer data bases and is representative of current design practices. Load transfer in two-bolt specimens is pure bearing in the first hole and by-pass plus bearing in the second hole, permitting a dual appraisal of strength analysis capabilities.

2. SPECIMEN CONFIGURATIONS - Four general test specimen configurations were used in Task 2; (a) a single bolt pure bearing, (b) a two-bolt-in-tandem (load sharing), (c) a four bolt fastener pattern specimen, and (d) a two bolt load interaction configuration, all of which are shown in Figure 3. Specific geometry variations required for each design variable are detailed in tables associated with the illustrated configurations.

Four tests were obtained from each room temperature dry specimen with both a single bolt and double bolt configuration (Figure 4). These specimens were tested, the failed portion of the specimen machined off and a new hole(s) drilled for subsequent testing. Length of the removed portion depended upon extent of damage sustained during the preceding test. Ultrasonic C-scans indicate that laminate damage is confined to the vicinity in front of and immediately around the bolt hole while the gross laminate is unaffected by a previous static test due to the low laminate strain levels at failure. This procedure minimized the amount of material used, minimized material variation between tests and utilized a common strain gage. Every specimen was strain gaged as shown in the individual figures.

			CON	CONFIGURATION	RTD		RTW	35	ETW	3	TOTAL
JOINT DESIGN VARIABLE		TEST SPECIMEN	LAYUP	VARIATION	TEN.	COM	TEN.	COM	TEN.	WO0	TESTS
-	TYPE I	1 1	1,2,3	0 INLB 25 52 75	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				>>		34
TORQUE	ТУРЕ П		1,2,3	0 INLB 25 50 75	+ + - > + + - > > + + + - > > + + + + - > > + + + +				>>	-	3 5
2 STACKING SEQUENCE	TYPE 1	0		LAYUPNO.6 LAYUPNO.7 LAYUPNO.8 LAYUPNO.9	>>>>	>>>>			>>>>	-	48
3 SINGLE SHEAR	TYPE I	0		$\frac{1}{e/d} = 2.6$ $w/d = 4.0$ $d = 0.375$	>>>>				>>		24
	TYPE 11		1		>	>	>	>	>	>	24
4 THICKNESS	TYPEI			$t_1 = 0.416$ $t_2 = 0.624$	>>	>>			>>	>>	32
5 COUNTERSUNK FASTENERS	TYPEI			$(h/t)_1 = 0.77$ $(h/t)_2 = 0.38$ $(h/t)_3 = 0.26$ $(h/t)_1 \& T_i$ $(h/t)_1 \& A_i$	>>>>						20
6 LOAD ORIENTATION (OFF-AXIS LOAGS, LEARING AND BYPASS ALIGN)	TYPEI	t o		$ \theta_1 = 10^0 $ $ \theta_2 = 22.5^0 $ $ \theta_3 = 45^0 $ $ \theta_4 = 90^0 $	>>>>	>	>	^	>>>>	>	48
Baseline configuration with protruding head fastency	th protrudir	ig head fastenc;			<u> </u>	T	Ł		SUBT	SUBTOTAL	264
					/	J					

A DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PERSON

Figure 1. Task 2 - Joint Design Variables Test Matrix

		Trot on outside	CON	CONFIGURATIO"	RTD	0	MT.W	-	ETW	3	TOTAL
JUINI DESIGN VARIABLE		IES! SPECIMEN	LAYUP	VARIATION	TEN	COM	TEN	WO0	TEN	CCM	TESTS
7 HGLE SIZE	TYPEII	0 0		$d_1 = 0.1875$ $d_2 = 0.375$ $d_3 = 0.500$	>>>						12
8 EDGE DISTANCE	ТУРЕ Л	\$ 0		(e/d) ₁ = 1.5 (e/d) ₂ = 2.0 (e/d) ₃ = 4.0 s ₁ = 2d s ₂ = 3d	>>>>				>>>>		94
9 WIDTH	TYPEII	0		$(w/d)_1 = 4.0$ $(w/d)_2 = 5.0$ $(w/d)_3 = 8.0$	>>>				>>>		24
10 LAYUP	TYPE II	0 0	3 3 3	(BASELINE)	>>>	>>>	>		>>>	``.' > > {	3 8
11 FASTENER PATTERNS	түре 🗵		- 60	ΑΞ	>>>>	>>			>>>>		99
12 LOAD INTERACTION (BYPASS AND BEARING NONALIGNED)	ТУРЕШ	$\frac{1}{\theta}$		$\theta = 0^{0}$ $\theta = 0^{0}$ $\theta 1 = 10^{0}$ $\theta 2 = 22.5^{0}$ $\theta 3 = 45^{0}$	>>>>	>					z

Figure 1. (Continued) Task 2 - Joint Design Variables Test Matrix

 $\widetilde{\parallel}$

▲ 4 tests after exposure to salt water environment, AS/3501-6

4 tests, T300/5208 Graphite/Epoxy

LAYUP NO. 1 50/40/10 LAMINATE:

 $[+45^{\circ}, 0^{\circ}, -45^{\circ}, 0^{\circ}, 90^{\circ}, 0^{\circ}, +45^{\circ}, 0^{\circ}, -45^{\circ}, 0^{\circ}]$ s STACKING SEQUENCE:

THICKNESS (t): 0.208 IN. NOMINAL (20 PLIES)

HOLE SIZE (d): 0.2495 IN. NOMINAL

HOLE CLEARANCE: MCAIR CLASS I' FIT 0.2495 (+0.0022/-0.0000) IN. ST3M 453-4 (0.2495 + 0.0000/--0.0005 IN. DIAMETER) **FASTENER TYPE:**

TORQUE VALUE: 50 IN.-LB (1/4 IN. FASTENER)

WIDTH (w): 1.50 IN. (w/2d = 3.0)

EDGE DISTANCE (e): 0.75 IN. (e/d = 3.0)

1.00 IN. HOLE SPACING(s): LOAD CONFIGURATION: DOUBLE-SHEAR

Figure 2. Baseline Specimen Configuration

Specimen Configuration	No. of Plies	w (in.)	e (in.)	d, (in.)
3A	20	1.500	0.750	0.2495
3B	20	1.500	0.500	0,2495
3C	40			0.2745
3D	60	2.250	1.125	0.3745
3E	- 00			0.5620

a) Single Fastener Specimens

Note: All dimensions are in inches.

Figure 3. Single-Test Specimens

Specimen Configuration	w (in.)	e (in.)	s (in.)	
3F		0.750		
3G		0.500	1.000	
3H	1.500	1.000	1.000	
31	1.000	0.375		
3J			0.750	
3K			0.500	
3L	2.000	0.750		
3M	1.250		1.000	
3N	1.000			

b) Multiple Fastener Specimens

Specimen Configuration 3P (20 Plies) Specimen Configuration 3Q (40 Plies)

c) Fastener Pattern Specimen

Figure 3. (Continued) Single-Test Specimens

Specimen			Dimension	s (in.)			Deg
Configuration	8	b	С	e	f	w	Off-Axis
3R	6.082	2.836	0.500	1.42	1.00	2.000	10
3\$	6.293	2.414	1.000	1.20	1.25	2.500	22.5
3Т	6.500	2.000	2.000	1.00	1.75	3.500	45

d) Load Interaction Specimens

Figure 3. (Continued) Single-Test Specimens

Specimen Configuration	No. of Plies	w (in.)	e (ìn.)	d (in.)	C'sink (in.)
4A		1,500	0.750		
4B	20	1,500	C.500	0.2495	
4C	20	1.000	0.750		NA
4D					
4E	40		[
4F	60	0.050	4.405		
4G	20	2.250	1.125	0.3745	
4H	40				100 ^o x 0.7556
41	60				

QP13-0115-136

a) Single Fastener Specimens

Figure 4. Multi-Test Specimens

Specimen d, Configuration (in.) (in.) (in.) (in.) 4J 1.500 0.750 1.000 0.2495 4K 3.000 1,500 2.000 0.4995 4L 2.250 1.125 1.500 0.3745 4M 1,125 0.568 0.750 0.1870 0.500 4N 4P 1.000 1.000 40 1.500 0.375 4R 0.750 0.2495 45 0,500 1.000 0.750 4T 4U 1.250 1,000 4V 2.000

b) Multifastencr Specimens

Figure 4. (Continued) Multitest Specimens

For specimens requiring moisture preconditioning, only single tests were performed with each specimen to minimize out-time prior to specimen testing. In Task 2, 47 multi-test, 204 single test, 60 fastener pattern and 16 load interaction specimens were required to complete the experimental evaluation of joint design variables.

3. SPECIMEN QUALITY ASSURANCE - Hercules AS/3501-6 graphite-epoxy (.0104 inch per ply) was used for fabrication of 311 test specimens. Sixteen specimens were fabricated with Narmco T300/5208 graphite-epoxy (.0054 inch per ply). Prior to testing, a three phase procedure to assure quality of test specimens was performed.

First, material prepreg was mechanically and physically tested to conform with McDonnell material specifications for prepreg resin content, resin flow, volatiles, resin tack, fiber areal weight, and mechanical properties. A vendor certification was required with each shipment of prepreg, to document that it had been tested and found acceptable to the same requirement. Upon receipt of shipment at MCAIR, a receiving inspection was performed to repeat certain mechanical and physical tests to assure that prepreg material was acceptable for usage in panel fabrication.

Process control panels, 3 in. x 4 in. x 8 plies (.08 inch), accompanying each autoclave cure cycle constituted the second phase of quality assurances. Interlaminar shear specimens machined and tested from these panels verified acceptability of each cure cycle run. After fabrication, each panel was inspected using ultrasonic reflection plate techniques per MCAIR process specifications.

The third phase of specimen quality assurance required that machining and drilling of each specimen be in conformance with MCAIR standards. Only specimens which were acceptable in all three phases of quality assurance were used in this test program.

The second secon

4. PANEL FABRICATION - Nineteen graphite-epoxy panels were fabricated for Task 2. Panel dimensions, corresponding ply orientations, and stacking sequences are listed in Figure 5. Three layup variations were fabricated from the 0°, ± 45 °, 90° family of ply orientations; a baseline 50/40/10 laminate (stacking sequence no. 1) a 30/60/10 laminate (no. 2) and a 70/20/10 laminate (no. 3). All other stacking sequence numbers in Figure 5 refer to variations of the baseline 50/40/10 layup in thickness or stacking sequence.

All panels were fabricated per MCAIR process specifications. Interlaminar shear specimens fabricated from accompanying process control panels were tested to validate each cure cycle run. All panels were accepted for testing in Task 2. The nondestructive evaluation of the nineteen panels by ultrasonic reflection plate techniques indicated no anomalies.

Panel	Dimensi	ions (in.)	No. of	Stacking Sequence		e/Epoxy Prepreg sterial Used
Number	L	W	Plies	(See Note)	Lot No.	Speol No.
1	40	24		\triangle	953	3
2			j	<u>^2</u> \	1	2
3	32	12	20	3		
4	32			4	984	1
5				<u>\$</u>		
6			40	<u>6</u>		3
7	48	18	60	\triangle	953	3 (Plies 1 → 18) 4 (Plies 19 → 60)
8		24		\triangle		4
9	25	12		8		
10	48	24	20			2
11	40	12	20	\wedge	984	
12	33	24		4.13		2
13	35	24				3
14	40	12		<u> </u>		2
15	40	24	20	100		3
16	33	24		\triangle		1
17	35	12		Φ		^
18		12	40	12	1,297 <u>(13)</u>	11 13
19	48	24	20	\triangle	984	3 (Plies 1 → 12) 1 (Plies 13 → 20)

Notes

NARMCO T300/5208 (5 mil per ply thickness) Graphite/Egoxy prepreg material was used in the fabrication of panel numbers 17 and 18. All other panels were fabricated using Hercules AS/3501-6 (10 mil per ply) Graphite/Epoxy prepreg material.

Figure 5. Panei Configurations

5. SPECIMEN FABRICATION - Individual specimens were machined from the panels per MCAIR composite machining processes. Each specimen was uniquely numbered to identify panel number, individual specimen number and test variable assignment according to the following code:

This coding facilitates tracing a specimen back to its panel and location within the panel if necessary. Generally, specimens tested for each design variable were selected from the total body of specimens by a random sampling procedure to preclude test data bias due to panel-to-panel variation. In some test conditions, this involved random selection of specimens from only one fabricated panel, or if there were only a few specimens of unique geometry, no randomization procedure could be used. In other test conditions, however, where sufficient number of specimens existed, selection of specimens from more than one panel was possible. Standard randomization selection processes were used; specimens were numbered and conventional procedures were used to generate random numbers for test condition assignments.

A total of 327 specimens were fabricated for Task 2. Reserve space was allocated in all panels to permit duplication of specimens from the same data base as necessary. Thickness, width and hole diameter were measured for each specimen.

- 6. TEST PROCEDURES All specimens were tested to static failure under tensile or compressive loadings as indicated in the Task 2 test matrix (Figure 1). Data documented for all test specimens included:
 - o Thickness, width and hole size measurements
 - o Failure load and failure strains
 - o Load vs. strain plots to failure
 - o Load vs. deflection plots to failure
 - o Weight gain of humidity exposure specimens
 - o Representative photographs

A double shear load block with 1/4 inch diameter bolts torqued to 50 in-1b was the loading fixture used for most tests. Joint load-deflection data was obtained from an externally mounted compliance gage. Deflections were measured relative to

points on the specimen and on the load block outside of the load transfer area. A typical double shear test setup and compliance gage configuration is shown in Figure 6.

Specimens requiring moisture preconditioning were stored in environmental control chambers and their moisture content monitored selectively by measuring weekly weight changes. A multiphase moisture preconditioning cycle, shown in Figure 7, was used for baseline thickness specimens to minimize preconditioning time required. Specimens were exposed initially to 95 percent relative humidity at 180°F until an average moisture content of approximately 1.0 percent was achieved. Specimens were then exposed to a relative humidity of 55 percent to achieve an equilibrium moisture content (i.e. constant through the thickness) of approximately .86 percent by weight. This moisture content is that which would be achieved in laminate thicknesses typical of fighter aircraft wing skins e posed to a year round average relative humidity of 81 percent at 80°F for ten years.

A one-step preconditioning at 95% relative humidity and 180°F was used for all 40 and 60 ply specimens to achieve desired average moisture levels in less than one year. However, throughthe-thickness moisture levels were not expected to be uniform for these specimens.

All specimens tested at 250°F were stabilized for 10 minutes at temperature before testing. All humidity-exposed specimens were weighed immediately before and after environmental exposures. Moisture data for each specimen is presented in Section II.9, Tables 1 through 3.

7. TEST EQUIPMENT - Two test machines were used for tests in Task 2; a Tatnall Testing Machine with a maximum tensile or compressive load capability of 75,000 pounds and a Materials Testing System (MTS) machine with a maximum tensile or compressive load capability of 100,000 pounds. Both machines were equipped with MTS hydraulic grips and variable load rate capability in terms of head travel per minute or applied load per minute. Accuracy of both machines is ±1 percent of load range. Calibrations were performed quarterly per ASTM standards.

Load blocks were fabricated for each specimen configuration in Task 2. Torque-up was applied in the double shear face configuration by using "floating" bushings in the load block through which a bolt is installed and torqued. The effect of a countersunk fastener was achieved through use of conical shaped bushing ends. Load clevises were steel and designed to a minimum load clevis-to-laminate stiffness ratio of ten to prevent significant variations in bolt-load distributions if material mechanical properties changed. Titanium and aluminum were used as the load block material for those tests requiring different load sharing capabilities (see test matrix, Figure 1).

Figure 6. Double-Shear Test Setup

Figure 7. Environmental Exposure Schedule

Load interaction specimens were tested with a specially designed loading fixture. This test fixture (Figure 8) consisted of identical, hydraulically actuated, scissor mechanisms on each side of the test specimen. Self-equilibrating bearing loads were introduced on the test specimen in a double shear configuration. By-pass loads were applied independently through conventional hydraulic grips at the ends of the specimen. Bearing loads were held constant as the by-pass load was increased. This load interaction fixture can be mounted at any angular orientation on the test specimen (Figure 8).

Figure 8. Load-Interaction Test Setup

Additional equipment used in this task were:

- o Moisture conditioning: Blue M Environmental Chambers
- o Weight measurements: Mettler Balance
- 8. SPECIAL PROCEDURES Four fastener pattern specimens were subjected to a salt spray environment prior to static testing. After 96 days of humidity exposure following the schedule in Figure 7, the specimens were exposed for 34 days to a salt spray environment. This environment consisted of a 5% NaCl salt spray at 95°F. An Albert Singleton Corp. salt spray cabinet was utilized. The specimens were mechanically fastened to an aluminum plate prior to salt spray exposure to simulate the test configuration. An exploded view of the test set-up after salt spray exposure is snown in Figure 9.
- 9. TEST DATA This section contains all specimen geometric data, final moisture content data, failure loads, failure strains and failure mode information for each specimen tested in Task 2. Test results are divided in two parts; single fastener joints and multiple fastener joints.
- a. <u>Single Fastener Tests</u> Tension and compression strength test data for the single fastener joints are presented in Tables 1 and 2 respectively. Specimen and test setups are shown in Figure 10. Representative photographs of specimen failures are shown in Figures 11 through 20.
- b. Multiple Fastener Tests Test data for multiple fastener joints and the load interaction specimens are presented in Tables 3, 4 and 5. Individual specimen and test set-ups for these tests are included in Figure 2. Photographs of representative failed multiple fastener specimens are shown in Figures 22 through 27.

Figure 9. Exploded View of Salt Spray Exposure Test Setup After Exposure

GP13-0115-141

TABLE 1. TENSION STRENGTH TEST DATA

Specimen	Specimen and Test Setup	Percent 0º/45º/90º	Test	Moisture Content	Test	Fastener Torque	Thickness (in)	Width (in.)	Hole Dia (in.)	Failing (41)	Failing Lo.d (1b)	Strain at (µin	Strain at Failure (μin./in.)	Made of Failure
	(See Figures)	Pies		(% by Wt)		(in1b)			\odot	Individual	Average	Individual	Average	€
1-1-12(1)									0.2508	088′9		1,950		
1-1-12(2)			Fastener				0 2116	1 510	0.2497	7,330	7,303	2,060	2,071	
1-1-12(3)			Torque		•		0.47.0	010.	0.2498	7,620	S = 309	2,135	S = 89	
1-1-12(4)						c			0.2508	7,380		2,140		
1-1-12(R)(1)			Fastener			>			0.2496	6,240		1,625		
1-1-12(R)(2)	40		Torque, Gap Between	-	F		2000		0.2495	6,420	6,480	1,715	1,766	
1-1-12(R)(3)	4A, 10A		Bushings and Surface	۲ ۲	Ē		0.2236	1.481	0.2504	6,420	S = 255	1,810	S = 125	
1-1-12(R)(4)		50/40/10	of Specimens						0.2502	6,840		1,915		(-)
1-10-20(1)		01/04/06							0.2520	1,160		2,160		
1-10-20(2)						č	0 1011		0.2502	6,900	6,995	2,050	2,106	
1-10-20(3)			-			 67	9/8	1.505	0.2498	7,010	S = 121	2,110	S = 45	
1-10-20(4)			Fastener						0.2505	016'9		2,105		
1-10-13			Torque	0.82		!	0.2076	1.503	0.2491	3,980		1,190		
1.11.12				0.78	10010	-	0.2026	1.505	0.2504	4,080	4,515	1,260	1,335	
1-12-5	34, 104			0.80	1 CC7	>	0.2072	1.506	0.2504	4,720	909 = S	1,370	S = 144	
1-1-21				98.0			0.2134	1.507	0.2505	2,280		1,520		
2-2-1(1)									0.2513	6,310		1,900		
2-2-1(2)	401				ŀ		1701.0		0.2499	6,640	6,545	2,030	2,063	
2.2.1(3)	+A, 10A	50/40/10		 { 2	=		7 461 .0	5 5 5	0.2506	005'9	S = 183	2,075	S = 143	
2.2.1(4)		Special	Stacking			S			0.2503	6,730		2,245		(
		Panel	Sequence	0.75		 [0.1929	1.507	0.2504	2,460		760		<u> </u>
	30. 40.	Number 2		0.77	- Just		0.1927	1.507	0.2506	2,850	3,488	845	1,063	
	34, 104			0.81	J 067		0.2010	1.504	0.2492	4,100	S = 991	1,263	\$ = 307	
				0.82			0.2036	1.505	0.2480	4,540		1,385		
2.3.1(1)									0.2508	4,720		1,325		
2-3-1(2)	70 100			V	L		0 1006	1 513	0.2496	4,200	4,370	1,165	1,290	
2-3-1(3)	47. 10x	50/40/10		5	 Ē		0.1030	716.1	0.2500	4,200	S = 245	1,260	S = 104	
2-3-1(4)		Special,	Stacking			5			0.2501	4,360		1,410		(
		Panel	Sequence	0.68		 R	0.1830	1.506	0.2502	3,500		1,030)
	30 100	c iagilinai		0.75	26195		0.1858	1.505	0.2503	3,400	3,448	1,030	1,096	
2.3-8	٠			0.78	2007		0.1934	1.503	0.2493	3,230	S = 180	1,165	S = 77	
2-3-6				0.78			0.1929	1.503	0.2506	3,660		1,160		

TABLE 1. (Continued) TENSION STRENGTH TEST DATA

日本のできるというというできるというできるというできる。

Specimen	Specimen and Yest Setup Configurations	Percent 0 ⁶ /45 ⁶ /90 ⁶	Test	Moisture	Test	Fastener	Thickness (in.)	Width (in.)	Hole Die (in.)	Failing Load (1b)	Load	Strain at Failure (µin./in.)	Failure /in.)	Mode of Failure
	(See Figures)	Zies		(% by Wt)		(inlb)			\bigcirc	Individual	Average	Individual	Average	4
2-4-1(1)									0.2512	6,520		1,895		
2-4-1(2)	70			2	L d		7 1047	1,512	0.2499	7,120	7,025	2,105	2,116	
2-4-1(3)	, to	50/40/10		<u> </u>	<u>.</u>		1341	716.1	0.2496	7,180	S = 343	2,170	S = 167	
2-4-1(4)	Y	Special,	Stacking			20			0.2505	7,280		2,295		(-)
2-4-3		Panel	Sequence	0.74		3	0.1383	1.505	0.2494	5,700		1,610		9
2-4-9	***	Number 4		0.74	יייים נייבנ		0.1982	1.504	0.2501	5,200	5,080	1,560	1,481	
2-4-8	νη: 'Ψς			0.66	J (167		0.1913	1.502	0.2502	5,040	S = 545	1,520	S = 168	
2-4-6				0.73			0.1946	1.502	0.2502	4,380		1,235		
2-5-1(1)									0.2511	6,330		1,845		
2-5-1(2)	701			2	F		0 2143	1 505	0.2500	6,450	6,393	1,940	1,921	
2-5-1(3)	, ich	50/40/10		<u>{</u>	<u> </u>		7417.0	000:-	0.2498	6,400	S = 49	1,935	S = 53	
2-5-1(4)		Special,	Stacking			5		ļ	0.2504	9,394		1,965		
2-5-3		Panel	Sequence	0.87		ລດ	0.2154	1.507	0.2498	4		.,235		Ð
2-5-9	24 100	C Jaguina		0.87	26036		0.2141	1.503	0.2501	4,500	4,185	350	1,214	
2-5-8	34, 104			0.80	1 007		0.2013	1.504	0.2504	3,720	S = 476	1,150	S = 103	
2-5-6				0.80			0.2010	1.504	0.2503	3,840		1,120		
3-12-21				0.83		<u> </u>	0.2240	1.505	0.2504	4,620		1,080		
3.10.9	3A 10B		Single	0.83			0.2155	1.430	0.2506	5,380	5,130	1,680	1,463	
3.12.9	, ,		Shear	0.38			0.2163	1.503	0.2500	4,820	S = 498	1,420	S = 282	
3.12.23		60/40/10		0.89	20020	9	0.2208	1.503	0.2496	5,700		1,670		(·
3-12-36		0	,	0.82	1 067	200	0.2115	1.504	0.2513	3,420		1,045		÷
3.12.17	30 100		Single	0.92			0.222;	1.504	0.2506	3,885	3,784	1,225	1,125	
3.10.19	20, 20,		e/d = 2	0.85			0.2110	1.501	0.2571	3,930	S = 243	1,090	S = 77	
3.12.34				0.76			0.197	204	0.2516	3,900		1,140		
3-11-9(1)									0.2533	3,440		1,030		
3-11-9(2)	40 100		Single				0 1047	1 506	0.2502	4,270	4,098	1,310	1,271	(-
3-11-9(3)	4b, 10b		e/d = 2				U. 1947	000:	0.2497	4,430	S = 446	1,395	S = 165	Э
3-11-9(4)		01/07/03		2	-	5			0.2502	4,250		1,350		
31-1(1)		D1 /04/00		ξ		n			0.2503	077,7		2,220		
3-1-1(2)	46 108		Single				0 2072	1 505	0.2496	6,330	6,840	1,820	1,968	(-
3-1-1(3)	, ,		Shear				207.0	200	0.2501	7,160	S = 777	2,960	S = 211	
3-1-1(4)									0.2497	6,040		1,770		

TABLE 1. (Continued) TENSION STRENGTH TEST DATA

Specimen	Specimen and Test Setup	Percent 0°/45°/50°	Test	Moisture	Test	Fastener Torque	Thickness	Width	Hole Dis	Failin (f)	Failing Load (IS)	Strain el (µin.	Strain et Failure ("Lin.fin.)	Mode of Factors
	(See Figures)	Zi es		(% by Wt)		(in th)		ì	\bigcirc	Individua	Average	Individual	Average	⑤
3.1.16(1)									0.2504	6,749		2,795		
31-16(2)			Single				0 2101	1 004	0.2498	6,240	6,265	2,580	2,633	(-)
3-1-16(3)	25. 74		w.d. 4				0.2.0		0.2502	6,220	\$ 362	2,670	S = 132	9
3-1-16(4)		50.40/10		< 2	6	2			0.2497	5,850		2.485		
3-10-3011)		00 to		1	<u>-</u>	3			0.3780	9,140		1,715		① ④
3-10-30(2)			-				0.1993	2.253	0.3748	9,200	2,40	1,815	3021	•
3-10-30(3)	4D, 10C		Shear						0.3750	8,650	20.5	1,735	2 - 2	() ()
3-10-30(R)(1)			,				2001.0		0.3748	7,230	2	1,535	3	€
3 10:30(8)(2)	· ·					160	0. 1036	7.200	0.3748	8,575		1,730		(-)
4-6-5(1)									0.3800	21,900		1,950		
4-6-5(2)	·						0		0.3746	21,400	21.525	1,935	1,940	(
4-6-5(3)	4E. 10C			હ્યું ટ	<u>-</u>) (6 4503	967.7	0.3745	71,300	S = 263	1,915	S 20	9
4-6-5(4)		0	Thickness						0.3751	21,500		1,950		
4-6-15		50/46/10	Panel Panel	1.15			0.4485	2.255	0.3846	18,600		1,965		
4.6.2				1.15	1:30.16		0.4635	2.256	0.3802	18,900	17,950	1,735	1,833	(-)
4-6-14	36, 100		4	1.16	1.057	0	0.4491	2.249	0.3750	17,100	S = 333	1,600	S - 97) •)
4.6-16				1.17			0.4493	2.259	0.3763	17,200		1.830		
4.7.511)									0.3797	32,300		2,000		
4-7-5(2)			Thickness	•		(0.3746	30,900	31,500	1.920	1,943	•
4.7.5(3)	4F, 10E		Panel	# 2	<u>-</u>	200	11696	7.754	0.3747	32,100	S = 816	1.985	S = 62	Э
4-7-5(4)		9							0.3751	30,700		1,865		
4-7-15		50/40/	Thickness	0.88			0.6817	2.253	0.5621	32.500		2,330		
47.2	i.		VI 09	0.85	2000	031	0.6898	2.260	0.5522	34,500	33,750	2,260	2 2 5 9	(-
4-7-14	36, 104		9/d = 2,	380	000	3	0.6767	2.256	0.5627	34.600	S = 995	2,260	S = 59)
4.7.16			4 = b/w	98 0			0.6711	2.256	0.5630	33,400		2,185		
5-13-23(1)			+						(D) 777 (C)	9,990		1,915		
5-13-23(2)			Journate:			3	0 2140	2.250	0.3750 (C)	9,240	5.425	1,815	1,725	Ę
5-13-23(3)	46, 101		Hore			160	0.2140	067.7	0.3746(C)	8,620	\$ = 628	1,590	\$ 187	-)
5.13-23(4)		60/40:10		2	10	3			0.3754 (C)	9,850	 - -	1,480		
5-6-9(1)		0, 20+,00		Ţ,	<u>.</u>				0.3755 (C)	23,300		2,200		
5-6-9(2)	100		Countersint			20	0.4519	2 249	0.3752(C)	20.500	21,500	1,960	2 034	(i) (ii)
5-6-9(3)))		An Pr. Panel			3	?	2	0.3746(C)	18,900	S = 2,179	1,800	S = 189	
5-6-9(4)		,							0.3751 (C)	23,300		2.175		

GP13-0115 *41

GP13-0115-232

TABLE 1. (Continued) TENSION STRENGTH TEST DATA

Mode of Failure	\triangleleft				4)					(2)		0				(9									(-)					ا [
Strain at Failure (µin./in.)	Average	,			1,408	S = 137					2,170	S = 140					1,441	S = 134					2,179	S = 46			2,311	S = 49			1,549	S = 163	
Strain at (Lin	Individual	1,310	., I&U	1,315	1,450	1,430	1,470	1,630	1,480	2,190	2,295	2,225	1,970	1,400	1,390	1,380	1,350	1,400	1,500	1,330	1,730	2,115	2,220	2,180	2,200	2,345	2,260	2,280	2,369	1,490	1,785	1,410	1,510
Failing Load (16)	Average				14,919	S = 851					32,925	S = 1,940					15,188	S = 413					7,450	S = 173			7,655	S = 143			5,333	S = 373	
Failing	Individual	13,900		14.800		15,000	000,51	15 0 75	13,373	33,400	33,700	34,500	30,100	000.04	095,¢1	000 81	14,500	15 200	13,200	15 450	12,430	7,420	7,610	7,550	7,220	7,580	7,500	7,720	7,820	5,500	5,780	5.020	5,030
Hole Dia	\bigcirc	(0.3766(C)	0.3701(0)	0.3748 (C)	0.3745(C)	0.3752(C)	0.3750 (C)	0.3752(C)	0.3752 (C)	0.3735(C)	0,3749 (C)	0.3746(C)	0.3748 (C)	0.3844 (C)	0.3742(C)	0.3749 (C)	0.3746(C)	0.3751(C)	0.3753 (C)	0.3752 (C)	0.3747(C)	0.2505	0.2499	0.2502	0.2498	0.2504	0.2501	0.2510	0.2514	0.2504	0.25.5	0.2504	0 7510
Width	(nu:/				2.253	2.254					6	667.7					2.257	2.246					1 506	2		:.503	1.506	1.506	1.508	1.506	1.506	1.508	1.505
Thickness	(III.)				0.2020	0.2098					. 0.0	0.650					0.2003	0.2142					กรกดร	555		0.2138	0.2237	0.2109	0.2245	0.2194	0.2233	0.2121	0.2105
Fastener Terque	(in ib)			F.O	3			150	3			nc .				c c				9	(60						50	3					
Test	d ====================================				ά	<u>.</u>			,		í	-					}- 0	<u>.</u>							F 0	ŗ					Jour	1.067	
Moisture	(% by Wt)				V V							Z						<u>(</u>					<	<u> </u>		0.90	0.88	6.77	0.88	0.89	9.30	0.81	0.81
Test	Variable			Countersunk	Hote,	Shear.	Titanium				Countersunk Hole.	60 PIy	Panel			Countersunk	Hoie,	Shear,	Aluminum								100	Off-Axis			•	-	
Percent 00/45 ⁰ /90 ⁰	Pies				01/04/03	01/04/00					3	59/46/10					01/04/03	01/04/00									50/40/10	2					
	Configurations (See Figures)				46 10u	+G, :OH					;	41, 101					9.	, id.					4	T D: 'Y					,	3A, 10A			
Specimen	E age	5-13-21(1)	5-13-22(1)	5-13-21(2)	5-13-22(2)	5-13-21(3)	5-13-22(3)	5-13-21(4)	5-13-22(4)	5-7-9(1)	5-7-9(2)	5-7-9(3)	5-7-9(4)	5-1-20(1)	5-13-24(1)	5-1-20(2)	5-13-24(2)	5-1-20(3)	5-13-24(3)	5-1-20(4)	5-13-24(4)	6-8-1(1)	6-8-1(2)	6-8-1(3)	6-8-1(4)	6-8-5	6-8-19	6-8-2	6-8-18	6-8-9	6.8-11	9-8-9	6-8-13

TABLE 1. (Continued) TENSION STRENGTH TEST DATA

Specimen and Percent Test Setup 00/450/900	Perc 0 ⁰ /45	3,000 P	Test Variable	Moisture Content	Test	Fastencr Torque	Thickness (in.)	Width (in.)	Hote Dia (in.)	Failing Load (1b)	Peo 7	Strain at (Lin	Strain at Failure (µin./in.)	Mode of Failure
Plies		_	Š	(% by Wt)		(in /b)			(1)	Individual	Average	Individual	Average	(
		_							0.2510	7,700		2,690		
40.	-	4 3	2		L		0.202.0	1 503	0.2508	1,770	7,693	2,760	2,749	.6
		<u> </u>	<u> </u>		=		0.2030	505.	0.2500	7,640	S = 57	2,750	S = 44	9
50(40/16 22.50		22.50				ć,			0.2497	7,660		2,795		
30/40/10 Off-Axis 0.81	Off-Axis	_	0.81			3	6.2103	1.503	0.2511	5,950		2,195		
0.87	0.87	0.87	0.87		20020		0.2213	1.503	0.2516	6,200	5,615	2,270	2,076	
3A, 10A	0.30	0.30	0.30	1 —	J_067		0.2119	1.501	0.2510	5,220	S = 543	1,930	S = 183	
0.87	0.87	0.87	0.87			•	0.2208	1.504	0.2513	5,090		1,910		
									0.2511	7,430		3,800		
\$00 V		2	2		F		0.2081	1 512	0.2497	7,380	7,515	3,740	3,865	
		<u> </u>	<u> </u>		-		200	7	0.2501	7,600	S = 130	3,930	S = 115	9
60/40/10 450		450							0.2501	7,650		3,990		
	Off-Axis		0.76			3	0.2041	1.511	0.2514	6,080	- 	3,185		
0.87	0.87	0.87	0.87		20020		0.2196	1.508	0.2508	5,960	5,513	3,095	2,945	
3A, 18A	0.81	0.81	0.81		J 067		0.2047	1.507	0.2533	5,290	S = 632	2,910	S = 263	
0.88	0.88	0.88	0.88				0.2188	1.509	0.2521	4,720		2,530		
					_		0.11		0.2500	7,840		4,965		
67.50	67.50		:		-	5	0.2120	onc.	0.2500	7,420	7,495	4,630	4,804	
30/40/10 Off-Axis	Off-Axis	_	۷ 2		-	e C	1906.0	1 503	0.2500	7,450	S = 243	4,920	S = 164	
****							U. 2001	1.5U/	0.2496	7,270		4,700		6
4A, 10A							3000	1 500	0.2515	7,370		4,870		9
800	800		3		t	9	0.2033	1.300	0.2506	7,550	7,250	5,025	4,783	
50/40/10 Off-Axis	Off-Axis		ď E		=	2	0 1000	1	0.2514	6,750	S = 347	4,395	S = 27!	
			i				0.1333	1.300	0.2507	7,330		4,840		

TABLE 1. (Concluded) TENSION STRENGTH TEST DATA

Specimen Number	Specimen and Test Setup Configurations	Percent 0°/45°/90°	Test Variable	Moisture Content	Test	Fastener Torque	Thickness (in.)	Wigth	Hole Dia (in.)	Failing (1b	Faiting Load (1b)	Strain at Failu (µin./in.)	Strain at Failure (µin./in.)	Mode of Failure
	(See Figures)	GIL.		(% By Wt)		(a		<u> </u>	\triangleleft	lenpinipul	Average	Individual	Average	\triangleleft
5-9-4	•						0.2031	1.509	0.2496	6,240		2,270	T	
6-9-7				4	t		0.1991	1.502	0.2496	6,360	6,498	2,270	2,323	(
8-6-9				<u> </u>	Ē		0.2613	1.502	0.2497	6,580	S = 251	2.340	S = 67	<u></u>
6-9-2	3A, 10A	66/40/10	006			2	0.2035	1.507	0.2493	6.810	:	2410		
6-9-11		2 /2	Off-Aris	0.79		000	0.1972	1.505	0.2503	4.820		3 780		6
6-9-1			4	0.78	10010		0.2070	1.509	0.2497	5,400	4.778	3,905	3 744)
6-9-10				0.79	1 007	L	0.2007	1.506	0.2503	4,320	S = 462	3,490	S= 178	
6-9-12				0.78		.	0.1977	1.505	0.2499	4,570		3.800		⊙ •

Š
ö
z

(C) following hole diameter dimension indicates that hole was countersunk.

e/d = 3 for all specimens except as noted in the test variable column.

 $\mathbf{w}/d = \mathbf{6}$ for all specimens except as noted in the test variable column.

4 Mode of failure legend: 4. (1) implies a combination bearing-shearout mode of failure. indicates that cleavage failure occurred parallel to the 0º piles.

GP13-0115-144

TABLE 2. COMPRESSION STRENGTH TEST DATA

Specimen	Specimen and Test Setup Configurations	Percent 0 ⁰ /45 ⁰ /96 ³	Test	Moisture Content	Test	Fastener Torque	Thickness (in.)	Width (in.)	Hote Dia (in.)	Failing t (16)	Failing Load (1b)	Strain at Fail (µin./in.)	Strain at Failure (Lim./in.)	Fried of
	(See Figures)	Z.		(% by Wt)		(in16)			\bigcirc	Individual	Average	Individual	Average	(4)
2-2-5		60/46/10					0.1934	1.506	0.2498	7,560		2,840		
1.2.1		Special,	Stacking	2	-	5	0.1928	1.507	0.2495	7,390	7,413	2,710	2,550	
2.24		Laminate	Sequence			3	0.2050	1.506	0.2501	7,260	S = 124	1,899	S = 437	
2.2.10	r1	Number 2					0.1994	1.507	0.2495	7,440		2,750		
2-3-5		E0./60/10					0.1826	1.505	0.2498	6,840		2,860		
2-3-7		Special,	Stacking	:			0.1840	1.506	0.2494	6,780	885'9	1,581	2,099	
2.3-4		Laminate	Sequence	Z	-	<u>. </u>	0.1924	1.503	0.2486	009'9	S = 322	1,800	S = 560	
2.3.19	405	Number 3					0.1945	1.503	0.2507	6,130		2,154		(
2-4-5	, YC, 10A	50/40/10					0.1974	1.504	0.2504	7,260		2,400		Ð
24.7		Special,	Stacking	 2	Fo	5	0.1942	1.505	0.2501	7,180	7,013	2,560	2,463	
2-4-4		Laminate	Sequence	Ę		3	0.1938	1.503	0.2501	6,870	S = 248	2,433	S = 69	
2-4-10		Number 4					0.1876	1.503	0.2504	6,740		2,460		
2-5-5		01/04/03			_		0.2150	1.505	0.2505	7,520		2,680		
2.5.7		Special,	Stacking	2		<u> </u>	0.2144	1.505	0.2505	7,460	7,173	2,680	2,538	
2.5-4		Laminate	Sequence	<u> </u>			0.2024	1.506	0.2501	6,830	S = 368	2,320	S = 176	
2.5.10		Number 5				_	0.2024	1.502	0.2501	6,880		2,470		
4-5-6							0.4627	2.254	0.3855	24,150	25,183	2,120	2,327	
4-6-10				2	Fa	186	0.4545	2.255	0.3748	25,500	S = 917	2,340	S = 200	
4-6-11	, -			1			0.4545	2.255	0.3756	25,900	Omits	2,520	0mits	
4-6-3	36 100	50,40/10	Thickness			0	0.4757	2.256	0.3833	21,900	4-6-3	2,130	4-6-3	
4-6-7	, , ,	0	Laminate	1,15			0.4675	2.255	0.3777	22,000		2,060		
4-6-8				1.15	20020		0.4636	2.253	0.3754	19,200	19,475	1,610	1,795	
4-6-4				1.15	267	<u> </u>	0.4760	2.259	0.3777	17,800	S = 1,788	1,620	S = 219	
4-6-12				1.14			0.4601	2.255	0.3759	18,300		1,890		(
4-7-6	3D, 10E		Thickness, 60 Ply Lam				0.6931	2.255	0.3746	34,500	56,000	2,245	3,252	•
4-7-10					 }		0.6870	2.258	0.5640	54,200	S = 2,095	3,270	\$ = 129	
4-7-11			Thickness	۹ 2	<u> </u>	3	0.6877	2.256	0.5625	55,500	Omits	3,175	0mits	
4-7-3		50/40/10	60 Ply				0.6912	2.257	0.5624	58,300	9.7.4	3,430	4-7-6	
4.7.7	3E, 10K		Laminate,	0.86			C 5927	2.255	0.5624	46,700		2,720		-
4-7-8		_	7 = p/a	0.34	26025	2	90	2.258	0.5622	44,700	44,938	2,520	2,620	
4.7.4			W/U = 4	0.85	267	<u> </u>	0.68,.	2.255	0.5622	44,500	S = 1,339	2,575	S = 92	
4.7.12				0.85			0.6790	2.259	0.5620	43,450		2,655		

TABLE 2. (Concluded) COMPRESSION STRENGTH TEST DATA

A CONTRACTOR OF THE PROPERTY OF THE PARTY OF

The state of the s

Specimen	Specimen ar Test Setup	nd Percant 00/45º/90º	Test	Moisture Content	Test	Fastener Torque	Thickness (in)	Width	Hote Dia (in.)	Failing Load (1k)	Losd	Strain at Failure (Lin./in.)	(Failure //e.)	Mode of Fatters
	(See Figure:	<u>E</u>		(% by Wt)		(in.4b)		Ì	\odot	Individual	Average	Individual	Average	
8-8-9							0.2223	1.506	0.2504	8,130		2,880		
6-8-12	T-		_				0.2256	1.506	0.2502	8,040	7,965	2,550	2,638	
6-8-13	T			V Z			0.2225	1.507	0.2500	8,000	S = 191	0/5/2	s = 152	
6-8-4					,	•	0.2192	1.502	0.2500	7,630		2,550		
6-8-7				0.88	E		0.2213	1.507	0.2505	8,200		3,270		
6-8-15			100	0.91		5	0.2223	1.505	0.2515	8,120	8,178	2,710	2,831	(
6-8-21	3A, 10A	20/40/10	Off Axis	0.90		2	0.2220	1.507	6.2514	090'8	S=	2,586	S = 302)
6-8-17	7			0.89			0.2248	1.507	0.2520	8,330		2,757		
6-8-20				0.94			0.2217	1.505	0.2507	5,620		1,900		
91-8-9				0.92	10010		0.2265	1.507	0.2525	5,960	5,870	2,175	1,975	
6-8-3				0.87	1.097		0.2177	1.508	0.2512	5,900	S = 172	1,875	S = 137	
6-8-14				0.84			0.2072	1.506	0.2511	000'9		1,950		

Notes

 Δ (C) following hole diameter dimension indicates that hole was countersunk.

e/d = 3 for all specimens except as noted in the test variable column $\frac{2}{\sqrt{3}}$ and $\frac{2}{\sqrt{3}}$ for all specimens except as noted in the test variable column.

And Mode of failure legend. (4): (1) implies a combination bearing-shearcut mode of failure.

**indicates that cleavage failure occurred parallel to the 0° plies.

Tension-cleavage mode net section and strearout combination. Failure extends along shearout path and net section path.

Shearout mode 0° and 90° piles "pushed" out in front of bolt hole

3 Net section mode

Bearing mode failure localized directly in front of bolt.

27

Test Configuration 10A

Figure 10. Single Fastener Test Setups

Figure 10 (Continued) Single Fastener Setups

Test Configuration 10D

Test Configuration 10E

Note: Dimensions are in inches.

Figure 10. (Continued) Single Fastener Test Setups

Figure 10. (Continued) Single Fastener Test Setups

leadless,
Tapered
Bushing

12.00

Bushing

Note: All dimensions are in inches.

GP13-0115-261

A STATE OF THE PARTY OF

--2.25--

Figure 10. (Continued) Single Fastener Test Setups

Test Configuration 10 I

Figure 10. (Continued) Single Fastener Test Setups

Plan View of Failure

Figure 11. Bearing Mode of Failure

Figure 12. Bearing Mode of Failure (40 Ply)

Plan View of Failure

Figure 13. Bearing-Shearout Mode of Failure

Figure 14. Bearing-Shearout Mode of Fallure

Plan View of Failure

Edge View of Failure

QP13-0115-153

Figure 15. Bearing-Shearout Mode of Failure 10° Off Axis Test

Plan View of Failure

Edge View of Failure

Figure 16. Shearout-Tension-Cleavage Mode of Failure 22.5° Off Axis Test

Plan View of Failure

Figure 17. Bearing-Shearout-Tens'on-Cleavage Mode of Failure 45° Off A s Test

Figure 18. Shearout-Tension-Cleavage Mode of Failure 67.5° Off Axis Test

Figure 19. Shearout-Tension-Cleavage Mode of Failure 80° Off Axis Test

Figure 20. Bearing-Net Section Mode of Failure 90° Off Axis Test

TABLE 3. TENSION STRENGTH TEST DATA

Mode of Failure	(4)						(<u>-</u>									(-					Θ	(⊙ ⊙		⊙	9		— 1	())	
Strain at Failure (µin./in.)	Average		3,668	S = 4ES			3,933	S = 306			2,701	S = 194			3,358	S = 305			3,685	S = 271			3,096	S = 237			3,113	3 = 335			3,463	S = 167
Strain al (µin	Individual	3,135	1	3,870	4,000	3,635	3,725	4,290	4,080	2,715	2,570	2,550	2,970	2,940	3,485	3,350	3,655	3,770	3,285	3,880	3,805	2,950	3,325	3,267	2,840	3,215	3,290	2,615	3.330	3,220	3,585	3,481
Failing Load (Ib)	Average	12,360	S = 1 368	ر 5	1-10-24(2)		14,114	S = 919			9,375	S = 874			11,640	S = 1,253			12,335	S = 904			10,408	905 = S			21,475	S = 2,455			19,394	S = 1,246
Failing L	In dividual	10,780	17 500	12, 160	13,140	13,395	13,380	15,300	14,380	9,730	8,970	8,400	10,400	10,100	11,650	11,640	13,170	12,360	11,050	12,900	13,030	10,290	10,780	10,820	9,740	22,500	22,700	17,800	22,900	18,000	18,900	19,750
Hole Dia	\bigcirc	0.2514 0.2505	0.2501 0.2502	0.2495 0.2497	0.2497 0.2495	0.2511 0.2513	0.2510 0.2503	0.2500 0.2496	3.2495 0.2496	0.2507 0.2553	0.2502 0.2513	0.2527 0.2510	0.2530 0.2534	0.2492 0.2494	0.2497 0.2498	0.2495 0.2495	0.2499 0.2500	0.2556 0.2522	0.2518 0.2511	0.2517 0.2506	0.2510 0.2512	0.2500 0.2508	0.2532 0.2534	0.2507 0.2517	0.2573 0.2527	0.5037 0.5026	0.4996 0.500	0.5024 0.500	0.4995 0.500	0.3762 0.3742	0.3745 0.3748	0.3749 0.3746
Width	(.m.)		-	Ι	L		L	당 -	L'	1.504	1.503	:.503	1.504	ات	1.507			1.504	1.502	1.501	1.502	1.505	1.499	1.505	1.502	2 007		3 000		, 250	-	1522
Thickness	(. (.		2122	0.2133				0.2326		0.2003	0.1932	0.2012	0.2294		0 1966			0.1984	0.1962	0.2123	0.2126	0.2187	0.2094	0.2030	0.2089	2000	u. 1380	0 1044	5	0 2155	55.35	0.2140
Fastener Torque	(intb)		c	>			è	ç			•	•							5	9								2	3			160
Test	dea.				ŀ	<u>-</u>					35005	J 067					Łά	<u>.</u>					2600	J 007					- C	Ē		
Maisture Content	(% by Wt)				3	₹				11.0	0.72	0.8Ľ	0.97		Ā			0.75	0.74	0.84	0.86	0.91	0.88	0.83	0.81				2	<u> </u>		
Test	Variable						Fastener	Torque											Single.	Shear			-						Hole	Size		
Percent 0 ⁰ /45 ⁰ /90 ⁰	Pites							50/40/10			-				-			•	60/40/10	01/04/00									01/07/03	01/04/06		
Specimen and Test Setup	Configurations (See Figures)					47, Z1A	-				410	7,7,75			41.216)					26 250	35, 216					2	4K, 21B			41 210)
Specimen	Number	1.10-24(1)	1-10-24(2)	1-10-24(3)	1-10-24(4)	1-1-3(1)	1-1-3(2)	1-1-3(3)	1-1-3(4)	1-12-4	1-10-1	1-12-28	1-1-8	3-11-7(1)	3-11-7(2)	3-11-7(3)	3-11-7(4)	3-10-2	3-10-6	3-10-21	3-10-23	3-12-18	3-12-30	3-12-3	3-12-13	7-10-32(1)	7.10-32(2)	7-10-35(1)	7.10-35(2)	7-1-18(1)	7-1-18(2)	7-1-18(R)(1)

TABLE 3. (Continued) TENSION STRENGTH TEST DATA

Test	Fastener		Thick (in	ssau.	Width (in.)	(in.)	(4)		(µin /in.)	in.)	Failura <
(% by Wr)			(inlb)		(MIL.)	\bigcirc	Individual	Average	Individual	Average	(b)
						0.1663 0.1872	9,500		3,740		⊙ ⊙
Hole NA	_	RT	20	0.2166	1.131	0.1378 0.1874	9,460	9,493	3,705	3,677	€
						(∞	8	2	8	; ;	• •
						0.2508 0.2501	10,220		3,045		
Edge				1010	1 504	1 1	10,800	10,838	3,205	3,263	0
0/d = 2		-		U. 1353	+0c.1		11,270	S = 454	3,420	\$ = 172	9
							11,060		3,380		
						- !	14,420		4,365		$\overline{\mathbf{S}}$
Edge Distance				0.1958	1.503		13,200	13,750	4,115	4,255	Э Э
e/d = 4						0.2502 0.2501	13.380	2 = 263	4,420	201	
			- -L			1	8,760		2,620		
						0.2509 0.2509	9,520	9,178	2,870	2,806	
Distance, NA e/d = 1.5		<u> </u>		0.1960	1.503	0.2502 0.2503	9,390	S = 344	2,855	S = 125	(
						0.2500 0.2498	9,640		2,880		9
Edos						0.2511 0.2510	12,680		3,445		
Distance,			20	0 2241	1506	1	13,800	13,710	3,850	3,756	
30 Hole Spacing				 :		0.2495 0.2497	13,760	S = 783	3,580	/ C Z = S	
						- 1	12,780		3,400		(
Edge Distance.						0.2495 0.2496	12,440	12,358	3,480	3,49 i	9
2D Hole				0.2131	1.508	0.2498 0.2500	12,460	S = 128	3,485	S = 82	
Spacing	1					0.2497 0.2499	12,350		3,600		
0.93				0.2310	1.508	0.2523 0.2527	11,480	•	3,270		\in
Edge 0.85				0.2078	1.500	0.2517 0.2527	11,260	9,915	3,125	2,841)
e/d = 2 0.81			,	0.2038	1.505	0.2532 0.2534	8,460	S = 1,682	2,450	S = 417	(a)
0.79		2500c		0.1969	1.501	0.2524 0.2544	8,460		2,520		
0.76	•	-		0.1990	1.503	0.2516 0.2514	10,480		3,105		(
				0.1968	1.507	ŀ	11,040	10,445	3,420	3,119	9
Uistance, 0.89		-		0.2158	1.501	0.2493 0.2523	10,260	S = 433	3,090	S = 230	0
0.90		_		-		1000	1	_	3		(*) - (*)

TABLE 3. (Continued) TENSION STRENGTH TEST DATA

Specimen	Specimen and Test Setup	Percent 0 ⁰ /45 ⁰ /90 ⁰	Test	Moisture Content	Test	Fastener Torque	Thickness	Width	Hole Dia	Dia .)	Failin	Failing Load (1b)	Strain at	Strain at Failure { \mu in./in.}	Mode of Failure
	(See Figures)	Pies	200	(% by Wt)	a.	(inlb)	<u> </u>			1	Individual	Average	Individual	Average	Θ
8-1-13				0.92			0.2307	1.511	0.2497	9.2500	9,120		2,380		Θ
8-10-22			Edge	0.85			0.2129	1.501	0.2496	0.2486	9,010	8,120	2,630	2,348	
8-11-10	4 7 %		e/d = 1.5	0.78			0.1968	1.501	0.2498	0.2502	7,370	S = 1,104	2,230	S = 211	① •
8-12-8				0.89			0.2151	1.504	0.2501	0.2501	6,980		2,150		
8-10-7			197	0.79			0.2055	1.503	0.2519	0.2523	10,330		3,105	i	(
8-1-15		00/07/07	Distance,	0.94	10010		0.2295	1.506	0.2529	0 2513	12,500	10.753	3,575	3,154	Ð
8-10-18	33, 212	50/40/10	30 Hole	0.86	1_067	20	0.2108	1.505	0.2515	0.2504	11,700	S = 1,760	3,372	S = 439	•
8-12-10			Spacing	0.80			0.2064	1.505	0.2532	0.2532	8,480		2,562		
8-1-7			17.7	0.84			0.2115	1.507	0.2517	0.2505	9,330		2,750		
8-10-26	,		coge Distance,	0.87		.	0.2115	1.503	0.2512	0.2512	8,920	8,653	2.665	2,519	(e)
8-12-20	3K, 21F		20 Hole	0.95			0.2228	1.505	0.2522	0.2520	7,560	S = 763	2,260	S = 228	
8-1-10			Spacing	0.97			0.2285	1.515	0.2506	0.2498	8,800		2,400		
9-10-28(1)									0.2514	0.2525	11,430		5,050		
9-10-28(2)	• • • • • • • • • • • • • • • • • • • •		Width,				9	700	0.2501	0.2494	10,720	10,510	4,700	4,705	
9-10-28(3)	4.7.14 		\$ = P/M				U. 2110	*.00.	0.2502	0.2502	9,790	S = 725	4,500	S = 244	
9-10-28(4)									0.2498	0.2498	10,100		4,570		(-
9-10-31(1)									0.2496	0.2512	12,800		4,335		<u>ි</u>
9-10-31(2)	7		Width,	2	1 -0		0.2150	1 252	0.2496	0.2503	12,880	12,760	4,515	4,466	
9-10-31(3)	40, 21A		g = p/m	۲ ۲	Ē		0.710	(67.1	0.2506	0.2500	12,600	S = 118	4,475	S = 82	
9-10-31(4)			- 7						0.2502	0.2497	12,760		4,540		
9-19-8(1)		•							0.2520	0.2527	13,200		2,875		
9-19-8(2)	***	E0/40/10	Width,			ç	7117	2 000	0.2498	0.2503	13,940	13,535	3,085	2,959	(
9-19-8(3)	¥, 5, 1	01/04/06	8 = D/M			3	† 1.7.0	7.004	0.2500	0.2503	13,700	S = 346	3.015	S = 109	
9-19-8(4)									0.2495	0.2495	13,300		2,860		
9-13-9	1			0.73			0.2143	2.000	0.2552	C.2487	10,440		2,340		①
9-13-10			Width,	0.85			0.2159	2.005	0.2518	0.2534	10,820	10,310	2,400	2,318	
9-13-11	3L, 21A		8 = p/M	0.75			0.2164	2.004	0.2520	0.7505	8,020	S = 1,532	1,850	S = 345	① ②
9-13-12				0.86	10010		0.2139	2.006	0.2523	0.2523	11,560		2,680)
9-13-5		•		0.72	1-067		0.1951	1.251	0.2503	0.2524	10,230		3,690		Ð
9-13-6	7		Wid:h,	0.82			0.2053	1.255	0.2535	0.2500	11,540	10,498	4,200	3,828	
9-13-7	C. 7 . W.		s = p/w	0.75			0.1974	1.250	0.2499	0.2538	10,120	S = 697	3,600	S = 264	—
9-13-8			1	0.86			0.2073	1.254	0.2489	0.2488	10,100		3,820		
! !															GP13-0115-161

TABLE 3. (Continued) TENSION STRENGTH TEST DATA

250°F 50 0.1941 1.001 0.2498 0.250 9,560 0.1940 0.1941 1.001 0.2498 0.257 0.2503 11,040 0.1923 0.1923 0.2592 0.2593 11,040 0.2049 0.2592 0.2593 11,040 0.2049 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2497 0.2498 0.2505 13,600 0.2071 1.502 0.2498 0.2505 13,600 1.2540 0.2071 1.502 0.2498 0.2510 0.2498 0.2505 13,600 0.2071 1.503 0.2541 0.2537 12,600 1.2540 0.2049 11,100 0.2043 1.490 0.2544 0.2503 10,700 1.1,200 0.1993 1.500 0.2544 0.2503 10,700 1.1,200 0.1993 1.500 0.2548 0.2498 0.2498 0.3400 8.040 0.2049 0.2049 0.2540 0.2540 0.2049 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2540 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2540 0.2541 0.2550 0.2498 0.2499 0.2540 0.2541 0.2550 0.2498 0.2499 0.2540 0.2541 0.2540 0.2541 0.2540 0.2541 0.2540 0.2541 0.2540 0.2541 0.2540 0.2541 0.2540 0.2541 0.2540 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2540 0.2541 0.2551 0.2541 0.2541 0.2551 0.2541 0.2				<	(in.)	(in.)	Torque	Test Temp	Content (% hv Wt)	Test Variable	Percent 0 ⁰ /45 ⁰ /90 ⁰ Plies	a°6
BT TO THE TOTAL TO	Individual Average /10	Average	Individual				(111.110)		(70 BÅ 641)			LIES
BT			9,650			0.1941			0.74			
RT	4,760 4,295	9,753	11,040			0.1988	<u>.</u>	2500c	0.80		Width,	En/An/10 Width,
RT	S = 360	S = 926	8,840			0.1923	3	7 067	0.74		w/3 = 4	
HT 50 0.2082 1.502 0.2498 0.2505 13,600 0.2086 0.2504 0.2498 0.2505 13,600 0.2086 0.2007 1.504 0.2541 0.2537 12,600 0.2007 1.504 0.2541 0.2537 12,600 0.2043 1.505 0.2541 0.2537 12,600 0.2043 1.490 0.2541 0.2537 12,600 0.2043 1.505 0.2541 0.2537 12,600 0.2043 1.505 0.2541 0.2537 12,600 0.2043 1.500 0.2544 0.2503 11,200 0.2133 1.500 0.2545 0.2503 11,200 0.2134 1.496 0.2542 0.2503 10,700 0.2134 1.507 0.2549 0.2549 8,370 0.2105 1.504 0.2549 0.2503 10,700 0.1867 1.504 0.2549 0.2503 10,700 0.1867 1.504 0.2549 0.2503 10,700 0.1867 1.504 0.2549 0.2503 10,700 0.1867 1.504 0.2549 0.2503 10,700 0.1867 1.504 0.2512 0.2503 10,700 0.1867 1.504 0.2512 0.2503 10,700 0.1865 1.504 0.2503 0.2496 13,640 0.2504 0.2503 13,800 0.2142 1.504 0.2503 0.2496 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2503 13,640 0.2504 0.2504 0.2503 13,640 0.2504 0.2	4,330		9,480			0.2004			0.82			
RT 0.2082 1.502 0.2498 0.2505 13,600 0.2006 0.2007 1.504 0.2491 0.2537 12,600 0.2007 1.504 0.2541 0.2537 12,600 0.2007 1.504 0.2541 0.2537 12,600 0.2007 1.504 0.2541 0.2537 12,800 0.2007 1.504 0.2541 0.2537 12,800 0.2007 1.505 0.2504 0.2504 14,100 0.2105 1.506 0.2504 0.2503 10,700 0.2105 1.506 0.2504 0.2503 10,700 0.2106 1.504 0.2543 0.2503 10,700 0.2106 1.504 0.2543 0.2503 10,700 0.2106 1.504 0.2543 0.2503 10,700 0.2106 1.504 0.2543 0.2503 10,700 0.2106 1.504 0.2543 0.2498 8,370 0.2498 0.2498 8,370 0.2496 9,040 0.1867 1.504 0.2512 0.2503 6,460 0.1865 1.504 0.2512 0.2503 6,460 0.2512 0.2503 13,500 0.2142 1.507 0.2504 0.2503 5,550 0.2503 13,500 0.2105 1.507 0.2504 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.2503 13,640 0.2512 0.2503 0.	_		12,840		1							
THE STORY IN THE S	4,055 3,989	13,418	13,660			0 2083		Id	ž			
RT 50 0.2007 1.505 0.2501 0.2485 12,600 0.2007 1.504 0.2541 0.2537 12,600 0.2007 1.505 0.2504 0.2537 12,600 0.2007 1.505 0.2504 0.2537 12,600 0.20043 1.496 0.2541 0.2537 12,600 0.20043 1.496 0.2541 0.2537 12,800 0.2005 0.1993 1.500 0.2564 0.2503 10,700 0.2006 0.1993 1.500 0.2545 0.2546 9,000 0.2106 1.504 0.2513 0.2505 9,880 0.2106 1.504 0.2530 0.2498 8,370 0.1867 1.501 0.2498 0.2498 8,370 0.1867 1.504 0.2530 0.2498 8,370 0.1867 1.504 0.2520 0.2498 8,370 0.1867 1.504 0.2520 0.2498 8,370 0.1865 1.504 0.2520 0.2503 6,140 0.1865 1.504 0.2507 0.2503 6,140 0.2803 1.505 0.2495 0.2503 5,550 0.2803 1.505 0.2495 0.2503 1.3050 0.2800 0.2142 1.507 0.2503 0.2496 13,640 0.2503 0.2503 0.2496 13,640 0.2503 0.2503 0.2496 13,640 0.2503 0.2503 0.2496 13,640 0.2503 0.	S = 140	S = 408	13,450	l	L	70.7.0		<u>.</u>	₹.			
250°F	4,080		13,780	1	<u></u>							
250°F RT RT 250°F RT RT RT RT RT RT RT RT RT R	١.,		12,600			0.2086			0.81			
250°F RT CO2043 1.490 0.2504 0.2504 14,100 CO2043 1.490 0.2504 0.2504 14,100 CO2134 1.496 0.2513 0.2501 11,200 CO2134 1.496 0.2513 0.2503 10,700 CO2150 1.500 0.2545 0.2540 9,880 CO2106 1.504 0.2513 0.2505 9,880 CO2106 1.504 0.2513 0.2497 8,040 CO2106 1.504 0.2496 0.2498 8,370 CO2050 1.501 0.2496 0.2498 8,370 CO2060 0.1867 1.504 0.2496 0.2498 9,380 CO2060 0.1867 1.504 0.2496 0.2496 9,040 CO2060 0.2142 1.507 0.2503 0.2496 13,640 CO2060 0.2169 1.504 0.2503 0.2496 13,640 CO2169 1.507 0.2504 0.2496 13,640 CO2169 1.507 0.2504 0.2496 13,640 CO2169 1.507 0.2504 0.2496 13,640 CO2169 1.507 0.2503 0.2496 13,640 CO2169 1.504 0.2503 0.2496 13,640 CO2169 1.507 0.2503 0.2496 13,640 CO2169 1.505 0.2503 0.2503 9,800 CO2169 1.505 0.2504 0.2523 9,800 CO2169 1.505 0.2554 0.2523 9,800	3,800 3,894	13,025	12,600	ŀ	├	0.2007	l.		0.79			0.70
250°F RT 250°F RT CO.1993 1.500 0.2504 0.2503 10,700 CO.2134 1.496 0.2513 0.2501 11,200 CO.2106 1.500 0.2545 0.2540 9,000 CO.2106 1.504 0.2530 0.2497 8,040 CO.2106 1.504 0.2530 0.2498 8,370 CO.1867 1.501 0.2496 0.2498 8,370 CO.1867 1.504 0.2512 0.2496 9,040 CO.1867 1.504 0.2512 0.2496 9,040 CO.1867 1.504 0.2512 0.2503 6,460 CO.1868 1.504 0.2507 0.2496 9,040 CO.1868 1.504 0.2507 0.2496 13,000 CO.2142 1.507 0.2545 0.2496 13,640 CO.2142 1.507 0.2503 0.2496 13,640 CO.2169 1.507 0.2503 13,650 CO.2169 1.507 0.2503 0.2496 13,640 CO.2169 1.507 0.2554 0.2514 13,000 CO.2169 1.507 0.2553 13,860 CO.2169 1.507 0.2553 13,880 CO.2169 1.505 0.2554 0.2531 9,800	S = 251	S = 723	12,800			0.2071			71.0			01/40/10
250°F RT 50 0.2134 1.496 0.2513 0.2501 11,200 0.1993 1.500 0.2564 0.2503 10,700 0.2050 0.2504 0.2503 10,700 0.2106 1.504 0.2513 0.2505 9,880 0.2106 1.504 0.2513 0.2505 9,880 0.2106 1.504 0.2513 0.2505 9,880 0.2106 1.501 0.2530 0.2497 8,040 0.1867 1.501 0.2498 0.2498 8,370 0.1867 1.501 0.2498 0.2498 9,350 0.1913 1.496 0.2522 0.2530 6,460 0.1865 1.504 0.2507 0.2503 6,460 0.1865 1.504 0.2507 0.2503 6,460 0.1865 1.504 0.2507 0.2503 13,050 0.2142 1.507 0.2504 0.2495 13,050 0.2504 0.2503 13,050 0.2504 0.2503 13,050 0.2504 0.2503 13,050 0.2509 0.2503 13,050 0.2509 0.2503 13,050 0.2509 0.2503 13,050 0.2169 1.504 0.2554 0.2534 11,860 0.2165 1.504 0.2554 0.2533 9,900 0.2165 1.505 0.2517 0.2523 9,900 0.2165 1.505 0.2517 0.2523 9,900 0.2168 1.505 0.2524 0.2521 9,880	4,265		14,100			0.2043			0.82			
250°F	3,330 (4) · (1)		11,200			0.2134			0.88			
A 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3,325 3,076 (4)	10,195	10,700		\vdash	0.1993		7500c	0.76			
RT 50 0.1867 1.501 0.2498 0.2498 8,370 0.1867 1.501 0.2498 0.2498 8,370 0.1867 1.501 0.2496 0.2498 8,370 0.1867 1.504 0.2496 0.2498 8,370 0.1867 1.504 0.2496 0.2498 8,370 0.1867 1.504 0.2496 0.2496 9,360 0.1965 1.504 0.2495 0.2503 6,140 0.1865 1.504 0.2507 0.2503 6,480 0.1883 1.505 0.2495 0.2503 5,550 0.1883 1.505 0.2495 0.2503 5,550 0.2142 1.507 0.2504 0.2496 13,640 0.2504 0.2496 13,640 0.2504 0.2504 0.2496 13,640 0.2504 0.2169 11,460 0.2169 1.505 0.2517 0.2553 9,900 0.2165 1.503 0.2451 0.2523 9,900 0.2168 1.505 0.2524 0.2521 9,680	2,650 S = 323	S = 965	9,000			0.2050		067	0.78			
HT 50 0.1867 1.501 0.2498 0.2497 8,040 0.1867 1.501 0.2498 0.2498 8,370 0.2496 0.2498 0.2498 8,370 0.1867 1.504 0.2496 0.2498 9,380 0.1913 1.496 0.2497 0.2496 9,040 0.1913 1.496 0.2522 0.2530 6,460 0.1913 1.504 0.2507 0.2503 6,460 0.1913 1.505 0.2495 0.2503 5,550 0.1813 1.505 0.2495 0.2503 5,550 0.2142 1.507 0.2504 0.2498 13,050 0.2142 1.507 0.2504 0.2498 13,050 0.2169 1.507 0.2504 0.2498 13,050 0.2169 1.507 0.2504 0.2496 13,640 0.2169 1.507 0.2503 0.2496 13,640 0.2169 1.507 0.2503 0.2495 11,860 0.2169 1.505 0.2517 0.2534 11,860 0.2169 1.505 0.2517 0.2523 9,900 0.2168 1.505 0.2524 0.2521 9,880			9,880			0.2106			0.87			
HT 50 0.1867 1.501 0.2498 0.2498 8,370 250°F 0.1867 1.504 0.2495 0.2496 9,040 0.1867 1.504 0.2512 0.2496 9,040 0.1865 1.504 0.2512 0.2503 6,460 0.1865 1.504 0.2507 0.2503 4,820 0.1883 1.505 0.2495 0.2503 5,550 RT 0.2142 1.507 0.2504 0.2498 13,060 0.2142 1.507 0.2504 0.2498 13,060 0.2169 1.507 0.2504 0.2496 13,640 0.2169 1.507 0.2504 0.2496 13,640 0.2169 1.507 0.2504 0.2495 13,680 0.2169 1.507 0.2503 0.2496 13,640 0.2169 1.507 0.2503 0.2496 13,640 0.2169 1.507 0.2503 0.2496 13,640 0.2169 1.507 0.2503 0.2496 13,680 0.2169 1.505 0.2554 0.2534 11,860 0.2169 1.505 0.2554 0.2533 9,900 0.2168 1.505 0.2524 0.2523 9,800	-		8,640									
250°F RT 250°F COLORS C		8,700	8,370		L			F 0				-
250°F 0.1867 1.504 0.2512 0.2503 6.140 0.1913 1.496 0.2522 0.2530 6.460 0.1865 1.504 0.2522 0.2530 6.460 0.1883 1.505 0.2495 0.2503 4,820 0.1883 1.505 0.2495 0.2503 5.550 0.2142 1.507 0.2504 0.2498 13,050 0.2142 1.507 0.2504 0.2496 13,640 0.2169 1.504 0.2554 0.2495 13,380 0.2169 1.504 0.2554 0.2495 11,860 0.2169 1.505 0.2554 0.2534 11,860 0.2165 1.505 0.2554 0.2533 9,900 0.2168 1.505 0.2524 0.2523 9,800	2,255 5 = 143	S = 601	9,350		1	0.186/	06	ř	Z Z		Layup	Layup
250°F 0.1913 1.496 0.2512 0.2530 6,140 0.1913 1.496 0.2522 0.2530 6,460 0.1865 1.504 0.2507 0.2503 6,460 0.1865 1.504 0.2507 0.2503 6,480 0.1865 1.504 0.2507 0.2503 5,550 0.1883 1.505 0.2507 0.2503 5,550 0.2142 1.507 0.2504 0.2514 13,000 0.2142 1.507 0.2504 0.2496 13,640 0.2169 1.504 0.2554 0.2534 11,860 0.2169 1.504 0.2554 0.2534 11,860 0.2165 1.505 0.2517 0.2523 9,900 0.2165 1.505 0.2524 0.2523 9,800 0.2168 1.505 0.2524 0.2521 9,680	2,175		9,040)								01/06/95
250°F 0.1913 1.496 0.2522 0.2530 6,460 0.1865 1.504 0.2507 0.2503 4,820 0.1883 1.505 0.2495 0.2503 5,550 0.2142 1.507 0.2504 0.2498 13,000 0.2142 1.507 0.2504 0.2498 13,000 0.2169 1.507 0.2550 0.2496 13,640 0.2169 1.504 0.2554 0.2534 11,860 0.2169 1.505 0.2517 0.2516 11,460 0.2165 1.503 0.2517 0.2523 9,900 0.2168 1.505 0.2524 0.2523 9,800	1,415		6,140			0.1867			6.73			107/07
A 150 F 1504 0.2507 0.2503 4,820 0.1883 1.505 0.2495 0.2503 5,550 0.2495 0.2503 5,550 0.2142 1.507 0.2504 0.2498 13,000 0.2504 0.2503 0.2496 13,640 0.2169 1.504 0.2554 0.2598 13,050 0.2169 1.504 0.2554 0.2554 13,860 0.2169 1.505 0.2554 0.2554 11,860 0.2165 1.503 0.2517 0.2523 9,900 0.2148 1.505 0.2524 0.2521 9,880	1,460 1,341	5,743	6,460			0.1913		30036	0.71			
RT 0.2142 1.507 0.2504 0.2514 13,000 0.2142 1.507 0.2503 0.2496 13,050 0.2503 0.2496 13,640 0.2503 0.2496 13,640 0.2169 1.504 0.2553 0.2496 13,640 0.2169 1.504 0.2554 0.2554 13,860 0.2169 1.504 0.2554 0.2554 0.2553 9,900 0.2148 1.505 0.2524 0.2521 9,680	S = 121	S = 721	4,820			0.1865		, 007	0.69			
RT 0.2142 1.507 0.2504 0.2498 13,050 0.2162 1.507 0.2503 0.2496 13,640 0.2169 1.504 0.2554 0.2495 13,380 0.2169 1.504 0.2554 0.2534 11,860 0.2165 1.503 0.2517 0.2523 9,900 0.2148 1.505 0.2524 0.2521 9,680	1,300		5,550		\neg	0.1883			0.73			
RT 0.2142 1.507 0.2504 0.2498 13,050 0.2169 1.504 0.2553 0.2495 13,380 0.2169 1.504 0.2554 0.2534 11,860 0.2165 1.505 0.2517 0.2455 11,860 0.2165 1.505 0.2517 0.2523 9,900 0.2148 1.505 0.2524 0.2521 9,680	7		13,000									
250°F 0.2169 1.504 0.2553 0.2496 13,640 0.2169 1.504 0.2554 0.2534 11,860 0.2169 1.505 0.2559 0.2516 11,460 0.2165 1.503 0.2517 0.2553 9,900 0.2148 1.505 0.2524 0.2521 9,680	5,300 5,468	13,268	13,050	1	_ 1	0 21/12		Τα	2			
250°F 0.2169 1.504 0.2554 0.2534 11,860 0.2120 1.505 0.2559 0.2516 11,460 0.2165 1.503 0.2517 0.2523 9.900 0.2148 1.505 0.2524 0.2521 9,680	S = 189	S = 300	13,640	li		7+17.0		<u>-</u>	<u> </u>			
250°F 0.2169 1.504 0.2554 0.2534 11,860 0.2109 1.505 0.2569 0.2516 11,460 0.2105 1.503 0.2517 0.2523 9.900 0.2148 1.505 0.2524 0.2521 9,680	2,600		13,380		-							01/00/06
250 ⁰ F 0.2165 1.503 0.2559 0.2516 11,460 0.2165 1.503 0.2517 0.2523 9,800 0.2148 1.505 0.2524 0.2521 9,680	5,440		11,860	1		0.2169			0.93			01/00/10
0.2165 1.503 0.2517 0.2523 9.900 0.2148 1.505 0.2524 0.2521 9.680	4,705	10,700	11,460			0.2120		7500E	0.87			
0.2148 1.505 0.2524 0.2521	S = 562	S = 1,222	9,800			0.2165		200	06.0			
	4,250		9,680			0.2148			0.92			

TABLE 3. (Continued) TENSION STRENGTH TEST DATA

Mode of Failure	(((9		Θ	(9)	(0.0
Failure /in.)	Average		4,351	S = 157			3,378	S = 174			4,345	S = 208			3,878	S = 186	
Strain at Failure (µin./in.)	Individual	4,430	4,120	4,390	4,465	3,246	3,480	3,570	3,220	4,580	4,200	4,140	4,460	4,040	3,980	3,620	3,870
Failing Load (1b)	Average		24,963	S = 275			19,400	S = 1,046			25,613	S = 694			21,513	S = 1,329	
Failing (Individual	24,700	25,350	24,900	24,900	19,000	19,000	20,950	18,650	26,150	25,200	24,850	26,250	23,200	21,900	20,200	20,750
Hote Dia (in.)	A.	0.2511	0.2513	0.2517	0.2513	0.2523	0.2510	0.2510	0.2504	0.2516	0.2521	0.2507	0.2510	0.2510	0.2515	0.2517	0.2509
HoH	7	0.2565	0.2544	0.2517	0.2540	0.2557	0.2514	0.2510	0.2517	0.2564	0.2513	0.2521	0.2514	0.2508	0.2535	0.2543	0.2513
	(iii)	2.507	2.510	2.503	2.504	2.502	2.500	2.510	2.503	2.507	2.498	2.507	2.505	0.502	2.506	2.505	2.497
Thickness	lin.)	0.2074	0.1971	0.2169	0.2181	0.2112	0.1944	0.1987	0.1946	0.2033	0.2116	0.2107	0.2033	0.2137	0.2041	0.2126	0.1946
Fastener Torque	(in.fb)								ç	2							
Test	Тетр		ŕ	Ē			0	1-0c7			ţ	Ē				7-067	
Moisture Content	0.87 0.73 0.76 0.76 0.88 0.88				0.87	97.0											
Test	Variable				Fastener	Stre! Substrate			•				Fastener Patterns,	Titanium Substrate			
Fercent 0°/45°/90°	Plies						•		01/04/03	201/04/05							
Specimen and Test Setup	Configurations (See Figures)					3P, 21H							;	34, 211			
_	Number	11.16-2	11.16.10	11-16-11	11.16.12	11-16-18	11-16-1	11-16-13	11-16-19	11-16-24	11-16-17	11-16-5	11-16-23	11.16-8	11-13-20	11.16.6	11-16-7

TABLE 3. (Continued) TENSION STRENGTH TEST DATA

のできない こうかん ないこう かんかん できない はんない これできる

Mode of Failure	(2)	(e)	(9)	0	(•			(-) -)					(• 	
Failure /in.)	Average		4,605	S = 116			4,223	S = 230			4,578	S = 332			5,470	S = 133	
Strain at Failure (µ in./in.)	Individual	4,500	4,510	4,720	4,690	4,450	4,340.	4,180	3,320	4,510	4,385	5,065	4,350	5,610	5,530	5,440	5,300
Load	Average		26,600	S = 334			23,425	026 = S			23,638	S = 1,246			22,900	S = 442	
Failing Load (1b)	Individual	26,600	26,250	27,050	26,500	24,750	23,550	22,700	22,700	23,000	23,150	25,500	22,900	22,800	22,600	23,550	22,650
Hole Dia (in.)	\bigcirc	0.2507	0.2515	0.2511	0.2510	3.2549 0.2524	0.2514	0.2512	0.2518	0.2520	0.2510	0.2511	0.2510	0.2522	0.2519	0.2517	0.2515
¥ :=	7	0.2527	0.2537	0.2524	0.2515	0.2553	0.2524	0.2543	0.2523	0.2530	0.2517	0.2523	0.2541	0.2546	0.2510	0.2541	0.2511
Width	Ë	2.508	2.502	2.503	2.504	2.500	2.502	2.504	2.508	2.500	2.500	2.503	2.501	2.505	2.507	2.500	2.503
Thickness	(Tur)	0.1944	0.1997	0.1918	0.2192	0.2 i 59	0.2000	0.2140	0.2119	0.1970	0.1544	0.2123	0.2056	0.2127	0.2103	0.2175	0.2205
Fastener Torque	(infb)			•						DC.							
Test	em e		į	Ē					9	4, nc7					ļ	Ē	
Moisture	(% by Wt)			۷ 2		06:0	0.78	0.89	0.84	97.0	0.73	0.88	0.85			٠ ۲	
Test	Variable				Fastener	Aluminum Substrate	<u> </u>	<u> </u>		1000	Patterns, Aluminum	Salt Spray Exposure	6		Fastener	Steel Substrate	
Percent 0°/45°/90°	Plies						6	50/40/10		-						30/60/10	
	Configurations (See Figures)							3F, 21J								3P, 21H	
Specimen	Number	11-13-19	11-13-13	11-16-22	11-16-15	11-16-14	11-13-15	11-16-9	11-16-3	11-16-16	11.16.4	11-13-16	11.16.20	11-15-19	11-15-22	11-15-23	11:15:17

Specimen	Specimen and Test Setup	Percent n ⁰ /45 ⁰ /900	Test	Moisture	Test	Fastener Torque	Thickness	Width	Hole Dia	eio 🥹	Failing Load (lb)	Load	Strain at Fail (µ in./in.)	Strain at Failure (µ in./in.)	Mode of Failure
Number	Configurations (See Figures)		Variable	(% by Wt)	Temp	(inlb)	(i	e e	\triangleleft		Individual	Average	Individual	Average	(
11-15-20				0.91			0.2203	2.504	0.2544	0.2520	19,400		4,825		•
11-15-21		or color	Fastener Patterns,	0.92	2500E	•	0.2173	2.498	0.2523	0.2517	20,300	20,575	5,400	5,114	
11 15-18	3r, 21H	30/00/10	Steel Substrate	0.91	J 067	·	0.2178	2.500	0.2551	0.2525	21,375	S = 916	5,150	S = 236	⊕ •
11-15-24			-	0.83			0.2152	2.504	0.2531	0.2526 0.2522	21,225		5,080		(4)
11-17-3						·	0.2064	2.502	0.2521	0.2520	21,100		3,315		(T)
11-17-5		3				5	0.2094	2.501	0.2542	0.2508	21,600	21,263	3,580	3,354	9
11.17.2		50/48/Ju				2	0.2055	2.510	0.2516	0.2509	21,050	S = 250	3,260	S = 153	(g)·(p)
11-17-8			Fastener Patterns,				0.2070	2.504	0.2568	0.2518	21,300		3,260		(J) · (J)
11-18-3	30, 21H		Substrate, T300/5208	٠ ۲	ž		0.2103	2.507	0.2523	0.2517	20,900		4,620		
11-18-5			Material				0.2077	2.506	0.2526	0.2517	20,700	21,138	4.690	4,695	@
11-18-2		30/60/10				•	0.2047	2.512	0.2557	0.2523	20,450	S = 927	4,480	S = 215	9
11-18-8							0.1998	2.492	0.2542	0.2516	22,500		4,990		

2 Hole specimens

Notes: $\widehat{\Delta}$ Hole diameter dimension legend:

TABLE 3. (Concluded) TENSION STRENGTH. TEST DATA

 $\mathbf{e}/\mathbf{d}=3$ for all specimens except as noted in the test variable column

 $\mathbf{w}/\mathbf{d}=\mathbf{6}$ for all specimens except as noted in the test variable column

20 ply thickness for all specimens except as noted in the test variable column

4 d hole spacing for all specimens except as noted in the test variable column

©

 \bigcirc

AS/3501-6 graphite/epoxy prepreg material used for all specimens except as noted in the test variable column

Specimen failed while changing range setting on test machine. Actual failing load could not be determined \langle 9

Testing terminated d⊜≥ to lack of high strength 3/16 diameter bolts. Type of bolts used failed in shear \otimes

Specimens were exposed to 5% NaCl salt spray at 95°F for 34 days **€**

Mode of failure legend: (4) · (1) implies a combination bearing-shearout mode of failure

Tension-cleavage mode net section and shearout combination. Failure extends along shearout path and net section path.

The Shearout mode 0° and 90° piles "pushed" out in front of bolt hole.

(6) Tension cleavage mode four hole specimens.

Shearout between holes-bearing mode.

(3) Net section mode failure only in net section area. Similar for four hole specimens.

(4) Bearing mode failure localized directly in front of bolt.

(7) Shearout-tension mode.

Block compression beyond holes mode similar for two hole specimens.

GP13-0115-163

TABLE 4. COMPRESSION STRENGTH TEST DATE

Percent 0°/45°/90° Va Plies	Test Variable	Moisture Content (% by Wt)	Test Temp	Fastener Torque (in. lb)	Thickness (in.)	Width (in.)	Hole Dia		Failing Load (1b)	Load	Strain at Failure (µ in Jin.) Individual Avera	Failure /in.) Average	Mode of Failure
					0.2225	1.508	0.2518	0.2516	11,350		3,280		
				1_	0.1996	1.502	0.2531	0.2511	11,500	11,950	3,455	3,455	
		<u> </u>			0.1976	1.502	0.2507	0.2513	12,150	S = 655	3,375	S = 184	
			Fa		0.2105	1.506	0.2513	0.2523	12,800		3,710		
L		0.74	<u> </u>		0.1953	1.505	0.2511	0.2514	11,500		3,205		
ingle-		0.74			0.1973	1.504	0.2521	0.2531	10,600	11,650	3,135	3,259	(4
Shear	i l	0.77		6	0.1966	1.501	0.2528	0.2522	12,700	998 = S	3,505	S = 167	•)
•	ı	0.82			0.2122	1.508	0.2513	0.2544	11,800		3,190		
.	i	0.85		L	0.2216	1.502	0.250;	0.2513	11,760		3,230		
L,,J	. 1	0.84	2002		0.2138	1.517	0.2528	0.2503	10,500	10,715	2,835	2,923	
		0.87	L 067		0.2124	1.506	0.2560	0.2508	10,200	S = 708	2,805	S = 205	
		0.89			0.2136	1.504	0.2538	0.2596	10,400		2,820		
					0.2025	1.500	0.2514	0.2504	14,100		4,660		•
		2		L	0.2173	1.503	0.2506	0.2552	13,800	14,165	4,445	4,791	9
		<u> </u>			0.1888	1.503	0.2513	0.2517	14,680	S = 370	4,780	S = 354	@
					0.2096	1.503	0.2520	0.2525	14,080		5,280)
		0.89	<u> </u>		0.2162	1.502	0.2560	0.2567	14,000		4,440	44	9
	1	98.0			0.2069	1.505	0.2489	0.2490	14,800	14,810	4,640	4,741	@
L		u.95	•	L	0.2299	1.567	0.2532	0.2517	16,140	S = 946	5,025	S = 255	9
		0.82			0.2077	1.502	0.2496	0.2510	14,300		2 860		© ©
		0.81			0.2060	1.502	9.2516	0.2520	11,080		09.		(~
		0.91	25.05		0.2216	1.506	0.2525	0.2512	11,200	11,405	3.500	3,790	9
		0.89		3	0.2130	1.499	0.2498	0.2512	11,720	S = 313	4,332	S = 378	
		0.30			0.2089	1.506	0.2504	0.2500	11,620		3,568		(-
					0.1851	1.500	0.2532	0.2531	11,440		3,090		•
-		A.S.	ä	L1	0.1850	1.499	0.2524	0.2502	10,950	11,493	2,600	2,875	
		<u></u>	:		0.1888	1.503	0.2566	0.2560	11,880	S = 404	2,810	S = 217	(4)
					0.1901	1.499	0.2497	0.2516	11,700		3,000		J
		0.73			0.1889	1.501	0.2536	0.2536	7,580		2,240		
		0.75	20020		0.1918	1.505	0.2511	0.2524	7,960	7,715	2,185	2,136	(
	1	0.75	 L 067		0.1908	1.497	0.2536	0.2517	7,500	S = 213	2,104	86 = S	Ð
	4	0.74			0.1905	1.501	0.2530	0.2502	7,820		2,016		

TABLE 4. (Continued) COMPRESSION STRENGTH TEST DATA

Mode of Failure	Æ	9	9			()			()	(4)))	(•	(9	(Ð	(9
Faikura /in.)	Average		6,055	S = 408			5,085	S = 301			«]			<]			<]	
Strain at Failura $(\mu in Jin.)$	Individual	5,950	5,520	6,375	5,375	4,185	4,995	5,500	5,060	3,305	3,400	3,225	8	5,685	6,025	8	8	2,820	4,160	®	4,320
Fziling Load (Ib)	Average		13,148	S = 297			10,285	S = 702			≪]			←]			<]	
Fziling (Ib)	Individual	13,410	12,800	13,380	13,000	11,000	10,700	10,000	9,440	17,200	17,300	22,550	33,250	21,360	23,000	29,300	29,350	15,800	23,150	31,400	28,700
Hole Dia (in.)	Δ	0.2517	0.2502	0.2525	0.2505	0.2530	0.2500	0.2534	0.2503	0.2512 0.2533	0.2514	0.2518	0.2512	0.2503	0.2583	0.2512	0.2598	0.2512	0.2514	0.2510	0.2514
HoH ir	$\langle \cdot \rangle$	0.2521	0.2511	0.2500	0.2501	0.2544	0.2515	0.2532	0.2535	0.2545 0.2517	0.2515	0.2522	0.2525	0.2508	0.2535	0.2557	0.2526	0.2522	0.2548	0.2513 0.2534	0.2512 0.2512
Width	(in.)	1.505	1.504	1.504	1.503	1.504	1.501	1.505	1.506	2.506	2.503	2.507	2.509	2.503	2.503	2.508	2506	2.502	2.499	2.505	2.502
Thickness	(13.)	0.2154	0.2151	0.2183	0.2127	0.2183	0.2146	0.2146	0.2147	0.1989	0.2072	0 2127	0.2094	6.2118	0.2138	0.2054	0.2087	0.2037	0.2048	0.2091	0.2083
Fastener Torque	(in. 16)				9	000				c	•	Ş	2	ć	-	1	2	•	>	ş	₹
Test	Temp		1	<u>-</u>	,		2000	1 007							!	<u>.</u>					
Moisture Content	(% by Wt)		4 2	ď Z		0.30	0.92	0.92	0.30						:	ď Z					
Test	Variable					d da				Fastener Patterns,	Aluminum Substrate	Fastener Pat- terns, Steel Substrate			Fastener Patterns, Aluminum	Substrate			Fastener Patterns,	Substrate, T300/5208	
Fercent 0°/45°/90°	Plies				01/03/06	20/00/10						00/40/10	-			30/60/10				50/40/10	
Specimen and Test Setup	Configurations (See Figures)		•			3F, 21A					34, 213	ЗР, 21Н			3P, 21J				1	30, 21	
Specimen	Number	10-15-7	10-15-10	10-15-11	10-15-4	10-15-8	10-15-9	10-15-6	10-15-12	11-13-17	11-16-21	11-13-14	11-13-18	11-15-26	11-15-16	11-15-25	11-15-27	11-17-1	11.17.7	11-17-6	11-17-4

TABLE 4. (Continued) COMPRESSION STRENGTH TEST DATA

Specimen	Specimen and Percent Test Setup 10/450/980	Percent 00/450/900	Test	Moisture	Test	Fastener	Thickness	Width	Hole Dia (in.)	Dia ∵	Failing Load (1b)	Load	Strain at Failure (µ in./in.)	Failure ./in.}	Mode of Failum
	(See Figures)	Pies		(% by Wt)	d me	(in.4b)	(III.)	e e	\triangleleft		Individual	Average	Individual Average	Average	(II)
							_	20.5	0.2523 0.2515	0.2515	10.050		2 720		
11-18-1							0.2052	9067	0.2505 0.2517	0.2517	000,01		3,,2		(
	,		Fastener			>		60.	0.2530 0.2516	0.2516	16 450		4 175		•
11-18-7			Patterns,				9.2068	5067	0.2505 0.2530	0.2530	064,01	(7,123	<	
	30, 21	30/60/10	Substrate,	¥.	<u>-</u>	1	7		0.2524 0.2517	0.2517	20.000	1	~]	(
11-18-6			T300/5208	-		?	0.2038	7167	0.2510 0.2500	0.2500	007'07		()		9
	1		I I I I I I I I I I I I I I I I I I I			٠			0.2516 0.2518	0.2518	22 AEO		<		(4)
11-18-4						o	U.2U54	1167	0.2515 0.2524	0.2524	064,62		9		
															GP13-0115-246

Notes: \(\int \) Hole diameter dimension legend:

TABLE 4. (Concluded) COMPRESSION STRENGTH TEST DATA

e/d=3 for all specimens except as noted in the test variable column

 $\mathbf{w}/d = 6$ for all specimens except as noted in the text variable column

20 ply thickness for all specimens except as noted in the test variable column

 \triangleleft

 \triangleleft

4 d hole spacing for all specimens except as noted in the test variable column <<u>></u> AS/3501-6 graphite/epoxy prepreg material used for all specimens except as noted in the test variable column

Specimen failed while changing range setting on test machine. Actual failing load could not be determined

Testing terminated due to lack of high strength 3/16 diameter bolts. Type of bolts used failed in shear

Specimens were exposed to 5% NaCl salt spray at 95°F for 34 days 8 6 ¢

Mode of failure legend: (4). (1) implies a combination bearing-shearout mode of failure

(3) Net section mode failure only in net section area. Similar for four hole specimens.

Tension-cleavage mode net section and shearout combination. Failure extends along shearout path and net section path.

1) Shearout mode 0° and 90° piles "pushed" out in front of bolt hole.

(?) Shearout-tension mode.

(6) Tension cleavage mode four hole specimers.

5) Shearout between holes-bearing mode.

(8) Black compression beyond holes mode similar for two hole specimens.

0213-0115-250

TABLE 5. LOAD INTERACTION STRENGTH TEST DATA

Fet Setup Test	Configuration Variable Variabl		Specimen and			Width	Thickne	< s	Hole D	<	3	Failing	Failing Load		Strain at Fai	Strain at Fadure (µ in./in.))	Mode of
See Figures Coad Cit4th At Hole 1 At Hole 2 Hole 2 Hole 1 Hole 2 Hole 2 Hole 1 Hole 2 Hole 2 Hole 2 Hole 3	19-12 19-1	Specimen	Configurations	Variable	Torque	(ju) <	(in.)	3	(in.)	=	Bots	-	<u> </u>	Gage 1		Gage 2		Failure
19-12	19-11 Load		(See Figures)		(intb)	=		At Hole 2	Hole 1	Hose 2	Î	Individual	Average	Individual	Average	Individual	Average	<u>ુ</u>
19-12 10 10 10 10 10 10 10	19-12 19-1	12-19-11		Load		2.003	0.2083	0.2085	0.24.97	0.2498		23,000		5,220		5,076		
19.1 Condition 50 Load Condition 50 Condition Cond	19-1	12-19-12	<u> </u>	Interaction 100		2.005	0.2034	0.1976	0.2499	0.2506		25,000	23,625	5,725	5,413	5,450	5,134	(
19.16 3R, B Loading 10-29 Loading 10-24 2.004 0.2156 0.2499 1.500 2.3800 5.460 4.625 5.100 4.625 5.100 4.625 5.100 4.625 5.100 4.625 5.100 4.625 5.100 4.625 4.265 4.265 5.100 4.625 4.265 <	19.19	12-19-7		Off-Axis Tension		2.004	0.2161	0.2124	0.2500	0.2498	1 206	22,700	S = 1,028	5,245	S = 235	4,920	S = 225	-
19.29 10.29 10.24 10.24 10.25 10.2	19.29	12-15-15		Loading		1.989	0.2015	0.1984	0.2500	0.2499	0000'	23,800		5,460		5,095		
19.14	19-14 1906 1906 1908 10-1863 1913 1920 10-2496 19-18	12-10-29	0 (1)	road		2.000	0.2126	0.2133	0.2503	0.2499		19,100	<	4,625	<	4,265	<	
19-13 Conding A 1.998 0.2052 0.2052 0.2499 0.2498 A A A A A A A A A	19-13 Composition Compos	12.19.14	·	Interaction 100		2.004	0.1963	0.1913	6.2500	0.2497		21,000	4	3,700	7	7,200	Ð	Figium
19-10 Load interaction 2.505 0.2164 0.2498 7.5 </td <td> 19-10 Loading Loadin</td> <td>12.19.13</td> <td></td> <td>Off-Aixs</td> <td></td> <td>1.998</td> <td>0.2052</td> <td>0.2052</td> <td>0.2499</td> <td>0.2498</td> <td><</td> <td><</td> <td><</td> <td><</td> <td><</td> <td><</td> <td><</td> <td>Due to</td>	19-10 Loading Loadin	12.19.13		Off-Aixs		1.998	0.2052	0.2052	0.2499	0.2498	<	<	<	<	<	<	<	Due to
10-34 Load Load Load Interaction 2.505 2.505 0.2164 0.2499 0.2602 31,200 36,565 5.565 5,370 5,390 5,370 5,045 5,390 5,370 5,390 5,370 5,045 5,046 5,046 5,046 5,046 5,390 5,370 5,390 5,390 5,390 5,3405 5,045 5,046	10-34 Load Load Interaction 2.505 2.505 0.2164 0.2499 0.2602 31,200 36,565 5,565 5,370 5,045 5,390 5,370 5,045 5,390 5,370 5,390 5,370 5,390 5,390 5,390 5,390 5,390 5,390 5,390 5,390 5,346 5,390 5,346 5,390 5,346 5,390 5,310 3,300	12-19-10		Loading	_	2.004	0.2095	0.2043	0.2500	0.2498	হী	(3)	গু	(3)	<u> </u>	(1)	<u> </u>	Sucking
19.1 32, Regarding 2.505 0.2073 0.2498 1,430 29,200 30,613 5,405 5,296 5,045 5,046	191 32, R 22.50 2.505 0.2073 0.2497 0.2499 1,430 29,906 30,613 5,405 5,399 5,045 5,089 5,045 5,089 1,950 1,430 0.2499 1,430 29,750 5,335 2,345 2,345	12.10.34		Load		2.505	0.2164	0 2144	0 2499	0.2502		31,200		5.565		5,370	}	
13-2 Off-Axis 2.506 0.2080 0.2124 0.2499 0.2499 1.350 29,200 S = 121 5,135 S = 121 5,015 S = 136 19-3 Load Interaction interaction 3.591 0.2116 0.2121 0.2499 0.2499 29,750 5,335 4,920 5,520 5,131 19-4 Interaction of the action of the acti	19-2 John Mark Loading 2.506 0.2724 0.2499 0.2499 1.930 29,200 S = 847 5,290 S = 121 5,015 S = 196 19-3 Loading 1.656 0.2116 0.2121 0.2499 0.2499 29,750 5,290 S = 121 5,615 S = 196 19-3 Load interaction 3.551 0.2121 0.2128 0.2499 0.2499 44,900 42,250 5,691 5,131 19-5 31,89 0.2156 0.2128 0.2499 0.2490 42,250 5,540 5,691 5,131 19-5 19-5 0.2166 0.2129 0.2499 0.2490 42,260 5,540 5,691 5,131 19-6 Loading 3.503 0.2180 0.2189 0.2499 0.2490 5,206 5,240 5,691 5,135 19-6 Loading 3.503 0.2180 0.2189 0.2499 39,900 5,236 5,346 5,045 5,045 19-6	12.19.1	000	Interaction 22.50		2.505	0.2073	7.2077	0.2497	0.2498		29,900	30,013	5,405	5,399	5,045	5,083	
19-9 Loading C 7505 0.2116 0.2121 0.2499 0.2499 44,900 6,140 5,520 5,131 19-4 3T, 8 450 3.501 0.2121 0.2499 0.2499 44,900 6,140 5,540 5,520 19-5 3T, 8 450 3.505 0.2156 0.2176 0.2499 0.2500 41,800 42,250 5,540 5,691 5,175 5,131 19-5 Tension 3.504 0.2166 0.2129 0.2499 0.2490 42,250 5,540 5,691 5,175 5,131 19-5 Tension 3.504 0.2180 0.2499 0.2490 8 2,003 5 2,003 5,344 5,045 5 344 5,045 5 344 5,045 5 306 19-6 Loading 3.503 0.2180 0.2183 0.2509 0.2499 39,900 5 3.35 4,785 4,785	19-9 Loading C 505 0.2116 0.2129 0.2499 0.2499 44,900 6.140 5.335 4,920 19-4 19-5 1.0ad 3.501 0.2121 0.2128 0.2499 0.2499 44,900 6.140 5,520 5,131 19-5 19-5 3.505 0.2156 0.2176 0.2499 0.2500 42,250 5,540 5,691 5,175 5,131 19-5 1-6-0 0.2156 0.2126 0.2499 0.2500 42,250 5,540 5,691 5,175 5,131 19-6 1-6-0 0.2166 0.2126 0.2499 0.2500 5-2,063 5,540 5,691 5,175 5,131 19-6 1-6-0 0.2180 0.2189 0.2499 0.2490 5-2,063 5,540 5,691 5,175 5,045 5-344 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045 5,045	12.19.2	· .	Off-Axis Tension		2.506	0.2080	0.2124	0.2498	0.2499	05*.	29,200	S = 847	5,290	121 = 8	5,0,5	S = 196	
19.3 Load Signature (1.5) (1.5	19-3 Load 3.501 0.2121 0.2128 0.2498 0.2499 44,900 6,140 5,520 5,131 5,131 45,600 42,250 5,540 5,540 5,540 5,131 5,131 45,600 42,250 5,540 5,540 5,135 5,131 42,560 5,540 5,540 5,135 5,131 42,560 5,540 5,540 5,135 5,131 4,785 4,785 4,785 4,7	12.19.9		Loading	٠	, 505	0.2116	0.2121	0.2499	0.2499		29,750		5,335		4.920	 	(
19-5 17-8 450-750 2.2180 0.2180 0.2499 0.2590 1.850 42,400 \$ -2.563 \$ 5,540 \$ 5,691 \$ 1.185 \$ 5,131 19-5 Loading 3.504 0.2180 0.2189 0.2499 0.2499 39,900 \$ -2.063 \$ 5,156 \$ -344 \$ 5,045 \$ -306 19-6 Loading 3.503 0.2180 0.2183 0.2499 0.2499 39,900 \$ -2.355 \$ -344 \$ -344 \$ -345 \$ -346 \$ -306 \$ -306 \$ -346 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.063 \$ -2.063 \$ -2.045 \$ -2.045 \$ -2.063 \$ -2.063	19-5 3T, 8 Off-Axis Loading 3.504 0.2135 0.2176 0.2499 0.2590 1,850 A2,400 42,400 S = 2,063 5,540 S = 344 5,175 S = 318 5,131 S = 346 5,135 S = 306 5,131 S = 306 13.504 S = 306 13.503 S = 306	12-19-3		Load		3.591	0.2121	0.2128	0.2498	0.2499		44,900		6,140		5,520		Э —
19-5 31,0 Off Axis 3.504 0.2186 0.2120 0.2499 0.2499 42,400 S = 2.063 5,750 S = 344 5,045 S = 306 19-6 Loading 3.503 0.2180 0.2183 0.2500 0.2499 39,900 S = 2.063 5,335 4,785 S = 306	19-5 31,0 Off-Axis 3.504 0.2166 0.2120 0.2499 0.2499 1.030 42,400 \$ = 2,063 5,750 \$ = 344 5,045 \$ = 306 19-5	12-19-4		Interaction 450		3.505	0.2155	0.2176	0.2499	0.2500	0.00	41,800	42,250	5,540	189'5	5,175	5,131	
19-6 Loading 3.503 0.2180 0.2183 0.2500 0.2499 39,900 5.335 4,785	19-6 Loading 3.503 0.2180 0.2180 0.2499 39,900 5.335 4,785 Specimen dimensional legend Wighth determined at midipoint between Roles A versee data was not calculated for two data points.	12.19-5		Off-Axis Tension		3.504	0.2166	0.2120	0.2499	0.2498	DC0'-	42,400	S = 2,063	5,750	S = 344	5,045	S = 306	
	Specimen dimensional leaend — Worth determined at mid-point between holes /4. Average data was not calculated for two data points	12-19-6		Loading		3.503	0.2180	0.2183	0.2500	0.2499		39,900		5.335	-1	4,785		
	Wigth determined at mid point between holes	tes																GP13-0115-16

4 Average data was not calculated for two data points. (5) Move of failure legend

- Hole number

<u>2</u>

2) All specimens were 20 plies thick and were fabricated using AS/3501-6 graphite-eboxy prepreg material. Percentage 0°/45°/90° plies was 50/40/10

(3) Testing terminated because of instability of specimen under compression loading.

Figure 21. Multiple Fastener Test Setups

A CONTRACTOR OF THE PARTY OF TH

Figure 21 (Continued) Multiple Fastener Test Setups

Test Configuration 21D

Figure 21 (Continued) Multiple Fastener Test Setups

Figure 21. (Continued) Multiple Fastener Test Setups

Figure 21. (Continued) Multiple Fastener Test Setups

Figure 21. (Concluded) Multiple Fastener Test Setups

Figure 22. Net Section Mode of Failure

Edge View of Failure

Figure 23. Bearing-Shearout Mode of Failure

Specimen Number 3-23-5

Figure 24. Bearing (Compression Test) Mode of Failure

Figure 25. Fastener Pattern Tension Test Specimens After Testing

Figure 26. Tension-Cleavage Mode of Failure

Figure 27. Load Interaction Tension Net Section Failures

45° Off Axis Test

SECTION III

RESULTS OF TASK 3 TESTING - MANUFACTURING AND SERVICE ANOMALIES

1. TEST MATRIX AND TEST OBJECTIVES - The objective of Task 3 was to evaluate the effects of commonly occurring manufacturing and service anomalies on the static strength of bolted composite joints. Information obtained from the literature survey of Task 1 was used in conjunction with recent manufacturing experience to identify realistic test variables. Seven anomalies were selected for experimental evaluation. The Task 3 test matrix, shown in Figure 28, details selected test variables and test parameters.

To obtain comparable results to baseline strengths of joints not possessing anomalies from Task 2, the Task 2 baseline test specimen configuration was used to evaluate the effect of each anomaly on static strength. Three environmental conditions were selectively evaluated; room temperature dry (RTD), room temperature wet (RTW) and elevated temperature wet (ETW). These test conditions were the same as those evaluated in Task 2. A replication of four tests per anomaly and environment were performed, for a total of 116 tests in Task 3.

- 2. SPECIMEN CONFIGURATIONS Only one test specimen configuration was needed to complete the Task 3 experimental evaluation; a
 two bolt in-tandem load sharing specimen. This configuration was
 incorporated in two types of specimens; a single data point
 specimen and a multiple data point specimen. Illustrated in
 Figure 29 are the detailed specimen geometries required for Task
 3. A total of 14 multi-test and 60 single test specimens were
 fabricated to complete the evaluation of manufacturing and
 service anomalies.
- 3. SPECIMEN QUALITY ASSURANCE Hercules AS/3501-6 graphite-epoxy was the sole material system used in Task 3. All material was qualified prior to panel fabrication as described in Section II.3.

Autoclave cure cycles were accepted based on process control panels accompanying each panel. Interlaminar shear specimens machined and tested from these panels verified acceptability of each cure cycle run.

To obtain the desired anomalies in the composite specimens, standard quality assurance of fastener hole fabrication or panel fabrication was waivered. The anomalies were, however, quantified using ultrasonic C-scan techniques.

Anomaly			Number of Te Per Environme		Total
Attomaty		RT (Dry) Tension	RT (Wet) Compression	ET (Wet) Compression	Specimen Tests
1. Out-of-Round Holes "1" Laminate (50/40/1 "2" Laminate (30/60/1		4	_		4
Broken Fibers on Exit : Severe Delamination Moderate Delamination		4	4	4	12 12
Porosity around hole Severe Porosity Moderate Porosity		4 -	2,2 <u>1</u> 2,2 <u>1</u>	4 4	12 8
4. Improper Fastener Seat 80% of Thickness 100% of Thickness	ing Depth	4	-	 . 	4
5. Tilted Countersinks Away from Bearing Sur Toward Bearing Surface		4 4	_	4	8 8
6. Interference Fit Tolerances 0.003 in. Interference 0.008 in. Interference	Layup 1 1 2 2	4 4 4 4		4 <u>2</u> 4 4 4	8 8 8
7. Fastener Removal and F 100 Cycles	Reinstallation	4	_	4	8
				Total	116 QP13-0115-110

After freeze-thaw cycling

2 Tension tests

Figure 28. Task 3 - Evaluation of Manufacturing Anomalies-Test Matrix

Specimen Configuration	d, dia +0.0022 -0.0000 (in.)	H, Hole Configuration (Test Variable)
29A	0.2495	Out-of-Round
29B	0.2495	Broken Fibers - Moderate Delamination
29C	0.2495	Broken Fibers - Severe Delamination
29D	0.2495	Countersink Seating Depth - 80% of Thickness
29E	0.2495	Countersink Seating Depth - 100% of Thickness
29F	0.2495	Tilted Countersink Away from Bearing Surface
29G	0.2495	Tilted Countersink Toward Bearing Surface
29H	0.2465	Interference Fit
29 I	0.2415	Interference Fit
29 J	0.2495	Fastener Installation and Removal - Protruding Head
29K	0.2495	Fastener Installation and Removal - Countersunk Head

Multitest Test Specimens

Figure 29. Task 3 Test Specimens

Note: All dimensions are in inches.

Specimen Configuration	d (in.)	Hole Configuration (Test Variable)
29L	0.2495	Severe Porosity
29M	0.2465	Interference Fit
29N	0.2415	Interference Fit
29P	0.2495	Broken Fibers - Moderate Delamination
290	0.2495	Broken Fibers - Severe Delamination
29R	0.2495	Moderate Porosity
295	0.2495	Tilted Countersink Away from Bearing Surface
29T	0.2495	Tilted Countersink Toward Bearing Surface
29U	0.2495	Fastener Installation and Removal - Countersunk Head

Single Test Test Specimens

Figure 29. (Continued) Task 3 Test Specimens

4. PANEL FABRICATION - Four panels were fabricated using AS/3501-6 graphite-epoxy for Task 3. Layup variations used were the baseline 50/40/10 and the 30/60/10 laminate of Task 2. Panel dimensions, ply prientations and stacking sequences are listed in Figure 30.

	Panel No.	Dimensi	ions (i.)	N of	Stacking Sequence		poxy Prepreg al Used
	160.	L	w	ies	(See Note)	Lot No.	Spool No.
	20	48	24	<u></u>	\triangle		
	21]	À		
4	22	32	12	20	^	1,034	3
<u>\$</u>	23				<u> </u>		

QP13-0115-176

Notes

1+45°, 0°, -45°, 0°, 90°, 0°, +45°, 0°, -45°, 0°] s

(+45°, 0°, -45°, 0°, +45°, 90°, -45°, 0°, +45° -45°)_s

Hercules AS/3501-6 Graphite/Epoxy prepreg material vias used in the fabrication of all penels.

Panel was fabricated so as to contain severe porosity

Panel was fabricated so as to contain moderate porosity

Figure 30. Panel Configurations

Two of the four panels were fabricated according to MCAIR process specifications, while two panels were intentionally fabricated to contain various amounts of porosity. Moderate and severe porosity levels were induced using water mist and modified laminate cure cycle procedures. All panels were accepted for testing in Task 3.

5. SPECIMEN FABRICATION - Specimens were fabricated from panels per MCAIR procedures. Unique specimen numbers were used to identify test variable and panel numbers. The specimen identification code used was the same as in Task 2 (Section II.5) with the variable number found in the Task 3 test matrix (Figure 28). Random selection of specimens from within two panels was used prior to hole drilling. Specimens from porous panels were selected by locating areas of desired amounts of porosity using ultrasonic C-scan and orientating specimen dimensions to include the porosity in bolt hole areas.

All manufacturing hole drilling anomalies required fabrication procedures not in compliance with acceptable MCAIR standards. A detailed description of the techniques used for each anomaly is given in the "Special Procedures" section (Section III.8).

A total of 78 specimens were fabricated for Task 3. Reserve panel material was allocated in all panels to permit specimen duplication and material for photomicrographic examination. Thickness, width and hole diameter measurements were recorded for each specimen.

- 6. TEST PROCEDURES All specimens were tested to static failure under tensile or compressive loadings as indicated in the Task 3 test matrix (Figure 28). Data documented for all test specimens included:
 - o Thickness, width and hole size measurements
 - o Failure load and failure strains
 - o Load vs strain plots to failure
 - o Load vs deflection plots to failure
 - o Weight gain of humidity exposure specimens
 - o Representative photographs

The double shear load block with 1/4 inch diameter bolts torqued to 50 in-1b used in Task 2 was also used in Task 3. Load, strain and deflection measurements were recorded in the same manner as the baseline Task 2 configuration.

Specimens requiring moisture preconditioning were exposed to the same environmental sequence as the baseline specimens of Task 2. However, due to the nature of the various anomalies, moisture absorption and desorption rates were affected while final equilibrium levels remained fairly constant, as shown in Figure 31.

Figure 31. Average Moisture Content for Task 3 Specimens

- 7. TEST EQUIPMENT Task 3 testing was accomplished with the same equipment used in Task 2 (Section II.7). Two load blocks were used in this task, the baseline load block used for all but interference fit fasteners and a two strap titanium load block configuration used for interference fit fastener testing. Floating bushings were used to obtain torque-up and to simulate protruding head and countersunk disteners.
- 8. SPECIAL PROCEDURES Special fabrication procedures were developed to simulate commonly occurring manufacturing anomalies. I description of each anomaly and the procedures to obtain the anomaly are given in the following paragraphs.

Out-of-round holes were produced by drilling two nominally sized holes .004 inch offset. The holes were elongated perpendicular to the specimen axis (Figure 32a).

Figure 32. Hole Drilling Anomalies

Broken fibers on the exit side of a hole were obtained using improper drilling techniques. Dull drill bits and no backup material was used for these specimens. Moderate laminate delamination in the vicinity of the hole was produced by force feeding drill bits through the last 10 to 20 percent of specimen thickness with severe delaminations produced by force feeding drill bits through the last 20 to 30 percent of specimen thickness (Figures 32b and 32c).

Laminate porosity was obtained by modifying panel layup and cure cycle procedures. Summarized in Table 6 are the procedures varied from the baseline to obtain moderate and severe levels of porosity. Through-the-thickness photomicrographs of bolt hole areas indicates the severity of the porosity induced by the two procedures (Figures 33 and 34). Two moderate porosity and two severe porosity specimens were subjected to freeze-thaw cycling after environmental exposure and prior to testing. The freeze-thaw cycle procedures followed are presented in Figure 35.

TABLE 6. NONSTANDARD PANEL FABRICATION PROCEDURES

Altered Procedure	Specification	Panel N	lumber
Attered Procedure	Specification	22	23
Vacuum Debulk	Yes	None	None
Intermediate Temperature Hold	1 hr at 275 ⁰ F	None	None
Bag Vacuum	0.05 in. Hg	0.8 in. Hg	1.5 in, Hg
Autoclave Pressure	100 psig	50 psig	50 psig
Moisture Induced	None	Every 7th Ply	Every Ply
Results 1	Good Panel	Moderate Porosity	Severe Porosity

1 Verified by ultrasonic and radiographic NDI

Set 5 The second of the Second

QP13-0116-101

Figure 33. Severe Porosity in Test Specimen Indicated by Photomicrographs

Figure 34. Moderate Porosity in Test Specimen Indicated by Photomicrographs

Figure 35. Freeze-Thaw Exposure Profile

Countersunk head depths of 80% and 100% of the laminate thickness were drilled to determine their effect on laminate bearing strength (Figures 32d and 32e). Standard drilling procedures preclude such knife edges.

Tilted countersinks were drilled 10° off the normal to the surface as illustrated in Figure 32f. Initially, clearance fit holes were nominally drilled perpendicular to the laminate surface. Countersinks were tilted toward and away from the bolt bearing surface of the straight shank hole.

Two interference fit levels were investigated in Task 3. Holes were drilled undersize and fasteners installed by pulling the fastener through the hole and into backup material to avoid delaminations. Section cuts were made to determine the amount of internal damage caused by various amounts of interference. Photomicrographs of the section cuts are presented in Figures 36 through 39.

Figure 36. Photomicrographic Results of 0.0072 Inch Interference Fit

Figure 37. Photomicrographic Results of 0.0053 Inch Interference Fit

Figure 38. Photomicrographic Results of 0.0043 Inch Interference Fit

Bolt Installed from This Side

Figure 39. Photomicrographic Results of 0.0030 Inch Interference Fit

Fastener removal and reinstallation of 100 cycles was required for the seventh anomaly. Fasteners were torqued to 50 in-1b for each cycle. Countersunk fasteners were used for this study. Standard hole preparation procedures were used to fabricate these specimens.

To determine and quantify the severity of each anomaly, ultrasonic C-scans were used. Representative C-scans for those variables in which the extent of damage was not mechanically measurable are shown in Figure 40. The interference fit hole in Figure 40 was prior to fastener installation and represents a benchmark to compare the other anomalies to. These C-scans would indicate rejectable items using standard production quality assurance procedures.

9. TEST DATA - All Task 3 test data are presented in this section. Results tabulated include; specimen geometric data, moisture content data, failure loads, failure strains and failure mode information.

Tension and compression strength test data are detailed in Tables 7 and 8 respectively. Test specimen setup configuration figures referenced in the tables are also included (Figure 41). Representative photographs of failed specimens are shown in Figures 42 through 45.

Figure 40. Ultrasonic "C"-Scans of Test Specimen Anomalies

Moderate

Porosity

GP13-0115-189

Severe

Porosity

TABLE 7. TENSION STRENGTH TEST DATA

Mode of Failure		(<u></u>			<u></u>	١			4))		(-)	9 ((C)		(Э Э					(i))		-
Failure în.)	Average		4,014	S = 62		5,203	S = 307			3,794	S = 204				S=441			3,340	S = 95		3238	8 = S			2,543	
Strain at Failure (µin./in.)	Individuel	4 030	4,080	4,015	5,610	5,210	4.870	5 120	3,875	4,045	3,615	3,640	3,975	3,855	3,158	3,460	3,875	4 080	3,885	3,923	3 225	3,275	3,126	2 295	2,730	2676
Load	Average		13,994	S = 123		13,088	008 = S			13,145	S = 740			12,446	S = 1,212		-	13,423	S = 278		11.204	S = 264			8,758	C = CAO
Failing Load (1b)	Individual	14,100	13,900	14,100	14 200	12,850	12,300	13,000	13,710	13,820	12,300	12,750	13,800	13,060	11,100	11825	13,220	13,810	13,220	13,440	1 060 11	10,940	11,275	7,830	8,920	8,980
Hole Dia (in.)	\odot		- 1	34 0.2528		1	37 0.2529	38 0.2540	38 0.2533	96 0.2502	05 0.2502	04 0.2502	33 0.2515	91 0.2498	04 0.2501	10 02501	43 0.2523	21 0.2522	40 0.2549		98 0.2509	1	02 0.2504	1 I	- 1	12 0.2523
	(iu.)	0.2515	1.511 0.2544	0.2534	0.2531	1 507 0 2517	0.2537	0.2538	0.2538	1 509 0 2496	0.2505	0.2504	0.2503	1 507 0 2491	0.2504	0.2510	.506 0.2543	1.509 0.2521	1.508 0.2540	1.507 0.2515	0.2499	1.506 0.2498	4 0.2503	◆ 0.2668	1510 4 0.2515	4 0.2512
	(iii)		0.2234		-					0.2220				0 2226				\dashv	\dashv	0.2155		0.2159			0.2231	
Fastener	(inlb)											!				200	:		1							
¥,	d E															- E										
Moisture Content	(% by Wt)															¥										
Test	Variable				Round Holes				Broken	Fibers	Moderate	Celeni.	Broken	Fibers	Severe		-	See .	Yordeny		Crunk Bolt Seating	Depth 20% of	Thickness	C'sunk Bolt	Seating	100% of
	>				Round				L														_			
Percent 60/458/900			50/40/10		Rou		21/00/05													50/40/10						
			50/40/10		29A, 41A Rour		30/90/10			70R 41A				29C 41A				29L 41A		50/40/10		290,418			29E, 418	

TABLE 7. (Continued) TENSION STRENGTH TEST DATA

									Hole	Dia	Cailing Load	bea	Strain at Failure	Faidure	Mode of
Specimen	Test Setup	Percent nº/a5º/40º		Moisture	Test	Fastener	Thickness	Width	(in.)		3		(µ in./in.)	/in.)	Failure
Number	Configurations (See Figures)	Plies	Variable	(% by Wt)	Тепр	(in.4b)	(in.)	(ia.)	\triangleleft		Individual	Average	Individual	Average	\triangleleft
5-20-39(1)			Tilted					•	0.2505	0.2508	10,340		2,715		
5-20-39(2)			C'sink				00100	▼	0.2504	0.2502	11,320	10,979	3,090	3,036	(E)-(3)
5-20-39(3)	296, 418		Bearing					∀	0.2496	0.2496	11,380	S = 482	3,090	S = 227))
5.20-39(4)			Surface					V	0.2500	0.2499	10,875		3,250		
6-20-44(1)		•					-		0.2481	0.2472	13,710	. —	3,945		
6.20-44(2)	Z9H, 41A		Interference		F		10200	1 506	0.2486	0.2493	14,140	13,693	4,065	4,003	(-)
6-20-44(3)	1 30		0.2465 Dia	¥			1077.0	B	0.2436	0.2488	13.600	S = 341	3,965	S = 57)
6-20-44(4)	28H, 41C								0.2463	0.2458	13,320		4,035		
5-20-40(1)								4	0.2571	0.2514	13,980		4,050		(2) (3)
6-20-40(2)	Z3 - , 41A		Interference				7000		0.2417	0.2452	13,580	13,553	3,905	4,025	(
6-20-40(3)		01/04/c	71t 0.2415 Dia				\$027.0	5	0.2459	0.2458	13,700	S = 435	4,130	S = 93	<u></u>
6-20-40(4)	281,410								0.2418	0.2418	12,950		4,015		
6-20-42		,		160			0.2148	1.512	0.2450	0.2457	11,520		3,576		
6-20-21			Interference	0.88			0.2094	1.503	0.2456	0.2452	11,290	11,400	2,535	3,279	·
6-20-26	Z9M, 41C		Fit 0 2465 Dia	0.98			0.2220	1.512	0.2455	0.2457	11,860	S = 391	3,680	S = 517	•
6.20.25	·			0.92			0.2093	1,511	0.2954	0.2458	10,930		3,330		6-0
6-20-3		ı		0.82	1,00c7	e E	0.2035	1.513	0.2423	02420	11,160		3,415))
6-20-13			Interference	0.92			0.2181	1.501	0.2425	0.2421	10,810	11,023	3,195	3,420	
6-20-27	29N,41C		P.I. 0.2415 Dia	0.98			0.2233	1.500	0.2420	0.2421	11,700	S = 543	3,805	S = 273	
6-20-4				0.85			0.2044	1.514	0.2424	0.2425	10,420		3,265		
6-21-8(1)	417								0.2488	0.2494	13,660		5,500		
6-21-8(2)	414,41A		Interference				0 2040	1 505	0.2485	0.2489	13,160	13,300	5,345	5,464	
6-21-8(3)	717		0.2465 Dia				0407:0	S	0.2996	0.2496	13,700	S = 480	5,710	S = 185	•
6-21-8(4)	73H, 4iC			•	F				0.2461	0.2460	12,680		5,300		(~
6-21-9(1)		1		۲ 2	- E				0.2430	0.2459	12,680		5,430		•)
6-21-9(2)	A14,182	01,00,00	Interference				0 2020	202	0.2446	0.2452	12,520	12,563	5,390	5,483	
6-21-9(3)		01/00/05 T	0.2415 Dia				07070	5	0.2457	0.2498	12,810	S = 246	5,630	S = 128	
6-21-9(4)	714,162								0.2421	0.2419	12,240		Gage Failed		
6-21-3		т—		0.84			0.2045	1.506	0.2456	6.2452	10,820		4,660		(
6-21-5			Interference	98'0	2000		0.2051	1.505	0.2451	0.2451	10,840	11,198	4.355	4,818	0
6-21-2) 14 (MS)		0.2465 Dia	0.89	72062		0.2118	1.505	0.2455	0.2453	1,380	S = 543	5,050	S = 384	() ()
6-21-11	•			0.81			0.1938	1.479	0.2457	0.2453	11,150		5,205		(O) (-(-(-(-)))
															GP13-0115-191

TABLE 7. TENSION STRENGTH TEST DATA

Number configurations (See Figures)	1	Percent 0°/45°/90°	Test	Moisture	Test	Fastener Torque	Thickness	Width	Hole Dia	O ia	Feiling Load (Ib)	Load	Strain at Failure (µin./in.)	Failure /in.}	Mode of Failure
	gures)	Plies	Adiable	(% by Wt)		(inlb)	/ III./	(IIII.)	\bigcirc		Individual	Average	Individual	Average	\bigcirc
6-21-1				0.85	i		0.2059	1.506	0.2421	0.2421	10,560		4 295		•
6-21-10		01/03/00	Interference	98.0	10010		0.2026	1.470	0.2422	0.2418	10,980	10,865	5,100	4,520	
6.21-6	 > -	20/00/00	Fit 0.2415 Dia	0.88	1_067		0.2131	1.505	0.2421	0.2425	10,920	S = 206	4,390	5 = 363	ΘΘ
6-214			200	0.89			0.2113	1.506	0.2422 0.2422	0.2422	11,000		4,695		
7.20-37(1)	• • • •								0.2520	0.2535	13,450	 	4,080		(i)
7.20.37(2) 233, 41A	4					50	3 2 1 0 6	1 500	0.2501	0.2502	14,640		4 245		
7-20-37 (3)			Fastener	_			66170	V	0.2332	0.2502	13,700		3,935		(O) (-)
7.20-37(4) 23K, 415	0		nemoval, Install	,				•	0.2502	0.2500	12,000	13,246	3,420	3,502	
7-20-37(R)(1) 29J, 41A	114	01/04/06	and Remove	ď Z	- -	_			0.2500	0.2500	14,006	90 <i>L</i> = S	4.230	S = 286	1
7 26-37 (R)(2)			Fastener 100 Times				0010	▼.	0.2503	0.2498	13,550		3,925		⊙•
7.20-37(R)(3) 28K, 41B	418		3				0017.0	₽ 00:-	0.2509	0.2500	13,380		4,150		
7-20-37(R)(4)						ļ		•	0.2499	0.2501	13,600		4,080		⊙ •

Dimensions noted in tabulation for out-of-round hole are those for the minor diameter. Major diameter dimensions that were obtained were as follows:

Notes:

1 Hole diameter dimension legend:

Specimen No.		le Diam	Hole Diameter (in.
1.20.36(2)	0	0.2570	0.2564
1-20 36(3)	·	0.2562	0.2570
1-20-36(4)	_	0.2575	0.2574
1.21-712)	_	0.2560	J 2556
1.21-7(3)	-	0.2561	0.2567
1-21-7(4)	_	0.2575	0.2577
	_		

TABLE 7. (Concluded) TENSION STRENGTH TEST DATA

(2) e/d=3 for all specimens

3 w/d=6 for ali specimens

20 ply thickness for all specimens

(5) 4d hole spacing for all specimens

AS/3501-6 graphite/epoxy prepreg material used for all specimens

(7) Mode of failure legend:

(4) . (1) implies a combination bearing-shearout mode of failure.

(3) Net section mode Failure only ir, net section area.

Tension-cleavage mode.
Net section and shearout combination. Failure extends along shearcut path and net section path.

(1) Shearout mode. 0° and 90° plies "pushed" out in front of bolt hole.

4) Bearing mode. Failure localized directly in tront of bolt.

GP13-0115-19

TABLE 8. COMPRESSION STRENGTH TEST DATA

و		[(-)		•	•		1.0	(c	-)	9	×	0	6		(-	-1	,			(-	•)		_		(3)	(-		$\widehat{U} \cdot \widehat{U}$	9	0	-
ain at Failu (p.in./in.)	Average		4,445	S = 343			4,575	S = 293			3,811	S = 148			3,326	S = 174			4,139	S = 163			4,425	S = 347			2,554	S = 450			3,111	99 ≈ S	
Strain at Failure (p.in./in.)	Individual	4,850	4,540	4,030	4,360	4,960	4,600	4,480	4,260	3,675	4,020	3,800	3,750	3,175	3,505	3,180	3,445	3,940	4,280	4,265	4,070	4,130	4,605	4,825	4,140	1,975	2,430	2,975	2,835	3,060	3,180	3,155	3.950
	Average		14,330	S = 663			13,560	S = 683			10,988	S = 752			10,418	S = 657			13,160	S = 416			13,865	S = 540			7,950	S = 1,328			9.943	S = 263	
Failing (1b)	Individual	14,700	15,000	13,500	14,120	14,330	12,800	13,200	13,940	11,720	11,550	10,400	10,280	10,200	11,080	009'6	10,790	12,580	13,500	13,420	13,140	13,060	14,080	14,220	14,100	6,420	7,260	8,980	9,140	9,780	10,200	10,130	9,650
Hote Dia	1	0.2532	0.2532	0.2532	0.2531	0.2531	0.2512	0.2506	1 !	0.2531	1	0.2544	0.2532	0.2506	0.2512	0.2508	0.2518	0.2540	0.2507	0.2511	0.2529	0.2524	0.2550	0.2571	0.2541	0.2541	0.2516	0.2510	0.2517	0.2520	0.2552		0.2524
Ÿ.	7	0.2533	0.2541	0.2534	0.2523	0.2511	0.2506	0.2504	0.2533	0.2531	0.2527	0.2536	0.2540	0.2507	0.2498	0.2501	0.2512	0.2530	0.2506	0.2510	0.2516	0.2535	0.2547	0.2535	0.2525	0.2537	0.2516	0.2508	0.2520	0.2515	0.2520	-	0.2531
Width (in.)		1.503	1.501	1.505	1.506	1.517	1.508	1,491	1,504	1.504	1.492	1.513	1.501	1.502	1,511	1.506	1.505	1.505	1.510	1.510	1.508	1.504	1.502	1.504	1.504	1.505	1.507	1.507	1.509	1.564	1.502	1.504	1.506
Thickness (in.)		0.2108	0.2161	0.2200	0.2059	0.2234	0.2015	0.2135	0.2097	0.2165	0.2242	0.2223	0.2197	0.2156	0.2118	0.2043	0.2183	0.2142	0.2159	0.2281	0.2187	0.2116	0.2146	0.2096	0.2131	0.2269	0.2107	0.2190	0.2174	0.2184	0.2184	0.2175	0.2191
Fastener Torque	(0)																0	6							· r								
Test Temp					ŀ	Ŧ.							2500F	-							RT	:							2500E	- 053			
Moisture Content	(% Dy va()	0.50	0.94	0.95	98.0	0.99	98.0	0.94	060	0.94	1.01	0.97	1.00	0.92	0.89	u.83	0.94	0.89	1.02	111	0.93	66'0	86.0	96'0	0.59	1.00	96.0	0.98	1.01	0.96	1.00	1.01	1.00
Test Variable		Broken	Fibers	Moderate	Delan	Broken	Fibers	Severe		Broken	Fibers	Moderate		Broken	Fibers	Severe	Celean		Severe	Foresity			Moderate	Porosity			Severe	Porosity			Moderate	Porosity	
Percent 0 ⁰ /45 ⁰ /90 ⁰ Pies	Salla																01/07/03	01/04/00															
- ×	(See Figures)		:	29P, 41A				290, 41A			414	73L, 41A			200 414	WI+ 'D27			20: 410	A:+ '757			205 414	V:+,'1167			201	23L, 41A			200 414	711, 1117	
Specimen		2.20-12	2.20-20	2-20-32	2-20-6	2.20-41	2-20-2	2-20-29	2.20.10	2-20-24	2-20-30	2.20-45	2-20-28	2.20.14	2.20.46	2.20.5	2.20-18	3-22-8	3-22-15	3-22-5	3-22-4	3.23.5	3-23-9	3-23-1	3-23-7	3-22-7	3.22.10	3.22.12	3.22.14	3-73 8	3.23.10	3-23-6	3-23-4

TABLE 8. (Concluded) COMPRESSION STRENGTH TEST DATA

Canal Sea Figures Cana	Case Figures Case	Specimen	~~~~	Percent 0º/45º/90º	Test	Moisture	Test	Fastener Torque	Thickness	Width	Z =	Hote Dia		Failing Load (No)	Strain a	Strain at Failure {µin.fin.}	Mode of Failure
150 150	Continue		(See Figures)	ž.		(% by Wr.)		(intb)	<u> </u>) 	7		Individual	Average	Individual	Average	,
10 10 10 10 10 10 10 10	150 150	5-20-11			Tilter	0.83			0.2137	1.503	0.2515	0.2520	10,080		2,970		\sqcup
150 150	10 10 10 10 10 10 10 10	5-20-7	295. 418		C'sink Away from	0.88			U.2088	1.504	0.2517	0.2514	9,550	9,768	3,030	2 994	7
150 150	1,000 1,00	5-20-9			Bearing	0.88		1	0.2082	1.505 4	0.2505	0.2307	9,500	S = 287	2,690		
1,000 1,00	Titled 0.32 Control	5-20-15			Surface	0.93			0.2176	1.501	0.2510	0.2562	9,940		3,285		
1502 1502 1502 1502 1502 1502 1502 1502 1503 1502 1002	250 251 251 251 250	5-20-16			Tiltand	0.92		-	0.2160	1.501	0.2497	0.2496	10,230		3,145		
201 231 416 59/44/10 forward 0.30 250°F 30 0.2011 1.508 0.2510 0.2513 9.560 5 = 431 2.770 5 = 288	20 20 21 21 22 23 24 25 25 25 25 25 25 25	5.20-17			C'sink	06.0	-0	·	0.2131	1.505	0.2515	0.2521	10,020	9,773	3,085	2,898	
1.50 1.50	Sufficiency	5.20-8	291,418		Toward Rearing	0.30	250°F	<u>. </u>	0.2085	1.503	0.2512	0.2505	9,560	5 - 431	2,770	S = 269	
20-23 1,060 1,001 1,001 1,001 1,001 1,001 1,001 1,001 1,001 1,000 1,00	20-23 Fattener 0.32 Fattener 0.32 0.213 0.2514 0.2514 0.2515 10.360 1.338 3.585 20-13	5-20-1			Surface	98.0		L.,	0.2011	1.508	0.2504	0.2513	9,280	-	2,580		L
20-31	20-31 29U, 418 Removal. 1.01 0.2223 1490 0.2514 0.2515 10.350 10.338 3.585	7.20.23		-	Fastener			L	0.2190	1.504	0.2514	0.2533	11,060		3,910		
100 times for all speciments 100 times	100 Times 100 Times 1.01 1.502 0.2591 0.2503 10.030 2.516 3.315 1.502 0.2503 10.030 2.516 3.315 1.00 Times 1.00 Time	7-20-31	2011 A1B		Removel,				0.2223	1.490	0.2514	0.2515	10,350	10,338	3,585	3,510	
20-32 100 Times 1.01 Times	Hole diameter dimension legend: Indicate that Hole File Indicate that Hole File Were Countersunk Were Countersunk (in.) In Bearing mode. Failure Incesized directly in front of bolt. A hole specimens 4 hole specimens 4 hole positive for all specimens 4 hole specimens 6 Specimens were subjected.	7-20-13	91+ '057		Fastener				0.2113	1.502	0.2591	0.2509	10,030	S=516	3,315	S = 307	ノ
Hole diameter dimension legand: And a of failure legand: And a of failure And a of failure Indicata that Holes	Hole diameter dimension legend: Indicates that Holes Holes	7.20-32			100 Times	1.01		L	0.2218	1.490 ▲	0.2624	0.2629	9,910		3,230		
Indicat st that Holes Were Counteraunk Indicat st that Holes Were Counteraunk (in.)	Indicat at that Holes Were Counteraunk Indicat at that Holes Were Counteraunk Indicat at that Holes Were Counteraunk Indicat at that Holes (in.) (in.) Wid-8 for all specimens 20 ply thickness for all specimens 44 hole specimens AS/3501-8 or auchite/spooxy or	:: X6 <					<										.,
Indicates that Holes Were Countersunk Hole Dia (in.) (i	Indicates that Holes Dia (in.) Hole Dia (in.) Were Countersunk In Bearing mode Failure (in.) Wid=3 for all specimens 20 bly thickness for all specimens 44 hole specimens AS/3501-6 or archital-accoxy presonants material used for all specimens	1 Hole diar	meter dimension	:puede			₹ 	Ande of fail	lure legend		Θ	implies e co	mbinetion t	earing-cheard	ut mode of f	aiture.	
Hole Die (in.)	hole Die (in.) (in.)	<u> </u>	ndicatus that Hole Were Counterson	2 7 [<			, \(\)	/					
ins from the specimens and inspection of the specimens were subjected to freeze the specimens were specimens which were were specimens	ins from the speciment of the speciment		{	<u>.</u> 	900		1	/ \ (/	V	\ \{						
ins all specimens w/d=6 for all specimens 20 ply thickness for all specimens 4d hole specimens were subjected to freeze 4d hole specimens	1) Bearing mode. Failure localized directly in front of bolt. 20 ply thickness for all specimens 44 hole specimens 45/3501-6 or archital-accoxy prescreens	}			(i.)		<u>/</u>			<u> 1</u>	/ \	\ 7.7	/				
1) Bearing mode. Failure side 3 for all specimens 20 ply thickness for all specimens 44 hole specimens	ins Description Description Description Description	3		_]	\triangleleft			·~.		, ,) 		<u></u>				
(1) Bearing mode. Failure localized directly in front of bolt. W/d=8 for all specimens 20 ply thickness for all specimens 4d hole specimens	(1) Bearing mode. Failure localized directly in front of bolt. W/d=8 for all specimens 20 pty thickness for all specimens 4d hole specimens 4d hole specimens 4d hole specimens	ec:mens		X.0	XXXX D.XXXX		/			_	/		_/				
s/d=3 for all specimens w/d=6 for all specimens 20 ply thickness for all specimens 4d hole specimens	e/d=3 for all specimens w/d=6 for all specimens 20 bly thickness for all specimens 4d hole specimens AS/3501-6 or anhite/accoxy or porce material used for all specimens				1	_		7	\			\rightarrow	\				
e/d=3 for all specimens w/d=8 for all specimens 20 ply thickness for all specimens 4d hole specimen for all specimens	e/d=3 for all specimens w/d=6 for all specimens 20 ply thickness for all specimens 44 hole specimens AS/3501-6 or abhite/accoxy prepriet used for all specimens				7		<u>.</u>	varing mode	P. Failure		S Block	k compressi	ē				
w/d=6 for all specimens 20 pty thickness for all specimens 4d hole specing for all specimens	w/d=6 for all specimens 20 ply thickness for all specimens 4d hole specim for all specimens AS/3501-6 or anhite/spoxy or sor so material used for all specimens		or all specimens				.) !	calized dire	ctly in) }	nd holes m					
20 ply thickness for all specimens 4d hole specing for all specimens	20 ply thickness for all specimens 4d hole specing for all specimens AS/3501-6 orachite/ecoxy oreoreor material used for all specimens		for all gracimens				,										
20 ply thickness for all specimens 4d hole specing for all specimens	20 ply thickness for all specimens 4d hole spacing for all specimens AS/3501-6 graphits/epoxy prepries material used for all specimens			,			g\s _p	ecimens w	ere subjects	d to freez	e-thaw cyt	de procedui	į				
	4d hole specing for all specimens AS/3501-8 oraphits/ecoxy prepries u		thickness for all 1	ipacimens i													
	(8) AS/2501-8 oranchita/ecoxy oreoreo material used for all specimens		specing for all st	pecimens													

Figure 41. Task 3 Test Setups

Test Configuration 41C
Figure 41. (Continued) Task 3 Test Setups

Figure 42. Tension-Cleavage Mode of Failure

Plan View of Failure

Figure 43. Bearing-Shearout Mode of Failure

Tilted Countersink - Toward Bearing Surface

Tilted Countersink - Away from Bearing Surface

Figure 44. Bearing-Shearout Mode of Failure

Figure 45. Bearing-Shearout Mode of Failure

SECTION IV

RESULTS OF TASK 4 TESTING - CRITICAL TOINT DESIGN VARIABLES ON FATIGUE LIFE

1. TASK 4 - TEST MATRIX AND TEST OBJECTIVE - The objective of Task 4 was to evaluate the influence on fatigue life of seven design variables and manufacturing anomalies which were shown to have a significant effect on static strength in Tasks 2 and 3. The test variables selected and fatigue parameters tested are shown in the Task 4 test matrix of Figure 46.

NO.	TEST VARIABLE	MAX FATIGUE		TESTS AMPLITUDE	SI	NO. OF	TESTS	UE
		STRESS	R = +0.1	R = -1.0	RTW	RTD	ETW	RTW(TS)
1	BASELINE	01	3	3	3	3	3	3
	50/40/10 23/3	σ2	3	3	3	3	3	3
		03	3	3	3	3	3	3
		$\int \hat{\Lambda}$	3	-	3	_	3	3
	30/60/10 22/3	σ 1	3	3		3		_
		J2	3	3	-	3	-	-
		<i>₀</i> 3	3	3	-	3	_	_
		\triangle	3	-			_	_
	19/76/5 2/3	01	3	3	-	3	_	-
		σ 2	3	3	_	3	_	-
		0°3 Δ13	3	3	-	3		-
		717	3	_			-	
2	STACKING SEQUENCE	91	3	3	_	3		
	50/40/10 🛕 🐧	<i>υ</i> 2	3	3		3	_	-
		ο 3	3	3	-	3	_	-
		<u> </u>	3			_	_	
	19/76/5 2 2	<i>σ</i> ₁	3	3	_	3	-	-
		<i>σ</i> 2	3	3	-	3	_	-
		₀ 3	3	3	-	3	_	-
		<u> </u>	3		_	_		
3	TORQUE UP			l				
	T = 160 INLB	<i>σ</i> 1	3	3		3	-	-
	50/40/10 🛕	σ2	3	3	-	3		-
		σ3	3	3		3	-	-
		\triangle	3			-	-	_
	T = 160 INLB	01	3	3	_	3		
	19/76/5 🛕	°2	3	3	-	3	_	
		<i>σ</i> 3	3	3	- ,	3		-
			3			_	_	-

Complementing static tests

 \triangle d = 0.375 in., w/d = 6, e/d = 3

Torque up = 0 in.-lb

GP13-J116-108

Figure 46. Task 4 - Evaluation of Critical Joint Design Parameters on Fatigue Life - Test Matrix

NO.	TEST VARIABLE	MAX FATIGUE		TESTS AMPLITUDE	SF		TESTS	UE
		STRESS	R = +0.1	R = -1.0	RTW	RTD	ETW	RTW(TS)
4	GEOMETRY							
	50/40/10 <u>3</u>	0 1	3		_	_	_	-
	d = 0.375	<i>σ</i> 2	3	_	_	_	-	-
	w/d = 4	_α 3	3	_	-	_	-	-
	e/d = 3	<u> </u>	3		·-			-
	19/76/5 <u>/3</u>	<i>σ</i> ₁	3	-	_	_	_	<u> </u>
	d = 0.375	0 2	3	_		_	-	_
- 1	w <i>l</i> d = 4	₀ 3	3	_	-	-	-	-
	e /d = 3	A	3		_	-		
	19/76/5 3	<i>σ</i> 1	3	-	_	_	-	-
	d = 0.375	<i>υ</i> 2	3	_	-		-	_
ŀ	w/d = 3	ν3	3	_	-	-	-	-
	e/d = 3		3	_				
	50/40/10 3	ση	3	_	_	_	_	
	d = 0.375	σ 2	3		_	-	-	_
	w/d = 4	ο3	3		_	_	-	-
	e/d = 4	1	3			_	<u> </u>	
5	FASTENER FIT (0.003	 0.008 IN1	i Ferference	 <u>:</u>)		ļ		
	50/40/10 🛕 🐧	σ ₁	3	Í –	_	_	-	_
	· —	σ ₂	3	_	-	i -	_	-
		σ ₃	3	_	_	_	_	_
			3	-	_	-	_	_
6	SINGLE SHEAR (PROT	RUDING A	ND CSK)					
	50/40/10 🛕	01	3	_	_	_	_	_
	T = 160 INLB	σ ₂	3	_	_	_	_	_
		σ ₂	3	_				
			3	_	_		_	
	d = 0,375 IN, CSK	01	3			† -	-	_
	w/d = 6	σ 2	3	_	_	-	-	_
	e /d = 3	σ ₃	3	_	-	_	_	_
	T = 160 INLB	A A	3	-	-		_	_
7	POROSITY			†	 		 	
	50/40/10 2 3	<i>σ</i> 1	3	3	_	_	_	-
		σ 2	3	3	_	_	_	-
		03	3	3	-	_	_	_
		3 Δ3	3	-	-	-	-	-
			L	1	TOTAL	TESTS =	351	

Complementing static tests

d = 0.375 in., w/d = 6, e/d = 3

Torque up = 0 in.-lb

Figure 46. (Continued) Task 4 - Evaluation of Critical Joint Design Parameters on Fatigue Life-Test Matrix

Static, constant amplitude and spectrum fatigue testing was performed. All constant amplitude testing was performed at room temperature with dry (as manufactured) specimens. For the baseline layup (50/40/10) spectrum fatigue testing was performed at four environmental conditions: room temperature dry (RTD), room temperature wet (RTW), elevated temperature wet (ETW), and elevated temperature wet with thermal spike (TS) exposure. Elevated test temperature and moisture preconditioning levels respectively were 250°F and .86% by weight. Two additional layups (30/60/10 and 19/76/5) were selectively tested. A replication of three tests were performed for each variable for a total of 351 tests in Task 4.

- 2. SPECIMEN CONFIGURATION The single bolt pure bearing specing of Task 2 was used to obtain data on bolted composite joint performance under cyclic loading. Baseline specimen geometry is shown in Figure 47. To avoid bolt failures during fatigue testing, 3/8 inch diameter steel fasteners were used. For complementing static tests, specimens were strain gaged to obtain strain and stiffness response data to failure. In Task 4, 54 static tests and 297 fatigue test specimens were required to complete the experimental evaluation of fatigue life of bolted composite joints.
- 3. SPECIMEN QUALITY ASSURANCE All quality assurance procedures described in Section II.3 were adhered to in Task 4.
- 4. PANEL FABRICATION Ten panels of AS/3501-6 graphite-epoxy were fabricated for Task 4. Panel dimensions, corresponding ply orientations and stacking sequences are listed in Figure 48. To maintain unique panel identification within the entire test program, Task 4 panels were consecutively numbered starting from the last panel number used in Task 3. Layups of 50/40/10 and 30/60/10 were identical to those tested in Tasks 2 and 3. A third, more matrix dominated layup (19/76/5) was evaluated for greater generality of test results.

Nine panels were fabricated per MCAIR process specifications. Panel number 30 was intentionally fabricated to contain a moderate amount of porosity. All panels were evaluated ultrasonically and accepted for testing.

5. SPECIMEN FABRICATION - Specimens were fabricated from the panels per MCAIR process specifications. Identification of each specimen was accomplished using the following code:

Specimen Configuration	No. of Plies	w (in.)	e (in.)	d, (in.)
47A	21 Plies for Specimen	2.250	1,125	
47B	Numbers with	1,500	1.125	0,3745
47C	31 → 33 as Their Middle	1.500	1.500	0,3745
47D	Number, 20	1,125	1,125	
47E	Plies for All Others	2.250	1.125	0.3693

Specimen Configuration 47 F

Figure 47. Fatigue Test Specimens

	Panel	No.	Stacking Sequence		e/Epoxy Prepreg terial Used
	No.	of Plies	(See Note)	Lot No.	Spout No.
	24		\triangle		8
	25		<u> </u>		8 (Plies 1 → 13) 12 (Plies 14 → 20)
	26		3		12
	27	20		1,290	12 (Plies 1 → 8) 9 (Plies 9 → 20)
	28		^	i ·	9
	29		<u> </u>		9 (Ply 1) 1 (Plies 2 → 20)
<u>6</u>	30			1,290 1,010	1 (Plies 1 → 3) 5 (Plies 4 → 20)
	31		4		1
	32	21	<u> </u>	1,487	1 (Plies 1 → 4) 2 (Plies 5 → 21)
	33		(9.)		2 (Plies 1 → 11) 3 (Plies 12 → 21)

Notes:

$$\overbrace{1} \ \ [+45^{\circ},0^{\circ},-45^{\circ},0^{\circ},90^{\circ},0^{\circ},+45^{\circ},0^{\circ},-45^{\circ},0^{\circ}]_{8}$$

$$\underbrace{ \left[\text{+45°, 0°, -45°, 0°, +45°, 90°, -45°, 0°, +45°, -45°} \right]_{S} }$$

$$\underline{\cancel{4}} \quad [(+45^{\circ}, -45^{\circ}, 0^{\circ})_{2}, (+45^{\circ}, -45^{\circ})_{2}, 90^{\circ}, (-45^{\circ}, +45^{\circ})_{2}, (0^{\circ}, -45^{\circ}, +45^{\circ})_{2}]$$

$$\underbrace{\underbrace{5}}_{} \ \ [+45^{\circ}, 0^{\circ}, -45^{\circ}, 0^{\circ}, (+45^{\circ}, -45^{\circ})_{3}, 90^{\circ}, (-45^{\circ}, +45^{\circ})_{3}, 0^{\circ}, -45^{\circ}, 0^{\circ}, +45^{\circ}]$$

Panel was fabricated so as to contain moderate porosity. Panel was not vacuum debulked during collation and a fine mist of water was sprayed between plies 5 and 6, plies 10 and 11, and plies 15 and 16 during collation procedures.

Figure 48. Panel Configurations

The fatigue variable number is identified in the Task 4 test matrix, Figure 46. A random selection of specimens for each test was done wherever possible.

A total of 351 specimens were fabricated for Task 4. Space was allocated in each panel for specimen duplication and material examination as necessary. Thickness, width and hole diameter measurements were recorded for each specimen after fabrication.

- 6. TEST PROCEDURES Data documented for all static test specimens in Task 4 included:
 - o Thickness, width and hole size measurements
 - o Failure load and failure strains
 - o Load vs strain plots to failure
 - o Load vs deflection plots to failure
 - o Weight gain of humidity exposure specimens
 - o Representative photographs

Data documentation for the fatigue specimens included:

- o Thickness and width measurements
- o Hole size measurements before and after fatique
- o Loading conditions
- o Cycles to failure
- o Hysteresis plots
- o Residual strength
- c Weight gain of humidity exposure specimens
- o Representative photographs

A double shear load block with a 3/8 inch diameter bolt was the loading fixture used for most of the fatigue test program. The baseline fatigue configuration required bolts to be untorqued.

Based on the associated static load-deflection data, load levels for the fatigue test program were chosen. Load levels for constant amplitude R=.1 fatigue specimens were chosen at the point of initial nonlinear behavior on the static load-deflection curve, and above and below this load level. Load levels for constant amplitude R=-1 and spectrum fatigue were based on R=.1 results.

Hysteresis curves were documented at incremental increases in total joint deflection by presetting the MTS machines to automatically interrupt cycling at predetermined amounts of total joint deflection. To obtain an accurate measurement of permanent hole elongation, documented hysteresis loops were compression-totension loadings to assure that the bolt was seated on the backside of the hole.

Cyclic rates were maintained within the envelope of the MTS machine to accurately sustain the required loads. In some tests, as holes elongated, cyclic rates were decreased to assure accurate performance.

The random load spectrum used in Task 4 was an "F-15 Measured-Mix Wing Spectrum-Truncated". This spectrum was generated by combining three F-15 wing baseline spectra (Air-to-air, airto-ground, and instrumentation and navigation) into one spectrum termed "F-15 Wing Measured Mix". The Measured Mix spectrum is a cycle-by-cycle history based on F-15 measured load exceedances. The distribution of hours and exceedances for the air-to-air, air-to-ground, and instrumentation and navigation in the Measured Mix spectrum are given in Table 9. To obtain the "truncated" spectrum, low loads in the baseline spectrum were truncated at 55% test limit load (TLL), resulting in 5000 load cycles per thousand hours. The exceedance curve for this truncated spectrum is illustrated in Figure 49. The maximum tensile load in this spectrum was 101% TLL with a maximum compressive load of -26% TLL.

TABLE 9. DISTRIBUTION OF HOURS AND EXCEEDANCES

	М	EASURED MIX
	HOURS	EXCEEDANCES OF 60% LIMIT STRESS
AIR-TO-AIR	700	3,150
AIR-TO-GROUND	100	140
INSTRUMENTATION AND NAVIGATION	200	10
TOTAL	1,000	3,300

QP13-0115-201

Figure 49. Measured Mix-Truncated Spectrum

Specimens requiring moisture preconditioning were exposed to an environmental schedule which allowed specimens to obtain an equilibrium level of approximately .86 percent moisture by weight in the least amount of time. Results of the moisture preconditioning schedule used are given in Figure 50.

Twelve moisture preconditioned baseline specimens were tested at an elevated temperature of 250°F. An environmental chamber enclosed the specimens during testing to maintain temperature and humidity conditions. During fatigue loading of the twelve specimens, identical moisture preconditioned coupon specimens were simultaneously subjected to the same environment to determine moisture level changes. These coupon specimens, weighed immediately before and after the fatigue testing, resulted in negligible moisture differences. Also, twelve specimens were subjected to thermal spikes prior to testing (described in detail in Section IV.8).

Randomly selected specimens were statically tested for residual strength after completion of the fatigue evaluation.

Figure 50. Task 4 Environmental Exposure Schedule

7. TEST EQUIPMENT - Task 4 testing was accomplished with 100,000 pound capacity MTS machines. All machines were equipped with hydraulic grips and circuitry necessary to automatically shut off the machine at preselected head displacement values.

Double and single shear load blocks used in Tasks 2 and 3 were also used in Task 4. No wear was detected of the load blocks after fatigue testing was completed.

8. SPECIAL PROCEDURES - One panel was fabricated with a moderate amount of porosity by modifying panel layup and cure cycle procedures. The procedures used were identical to those used in Task 3 (Section III.8). Ultrasonic inspection was used to quantify the amount of porosity and to locate specimens within the panel to obtain moderate porosity levels within the bolt hole area.

Twelve baseline specimens were subjected to thermal spikes during environmental preconditioning. The thermal spikes were representative of measured F-15 flight test data for a supersonic dash. The thermal spike procedure used is cuclined in Figure 51. Ideally, heat-up and cool-down rates of 1°F per second were required. Specimens were weighed immediately before and after thermal spiking to determine moisture absorption characteristic changes. These weight measurements indicated no moisture loss during the thermal spike exposure. A series of ten thermal spikes were performed allowing two days of environmental exposure (180°F - 55% RH) between spikes.

Figure 51. Thermal Spike Cycle

- 9. TEST DATA Results of all test data obtained in Task 4 are presented in this section. Test results are divided in three parts; static tests, constant amplitude fatigue and spectrum fatigue tests.
- a. Static Tests Tension strength test data used to determine fatigue load levels are presented in Table 10. Associated specimen and test setup configurations are shown in Figure 52. Representative photographs of specimen failures are shown in Figures 53 and 54.
- b. Constant Amplitude Fatigue Results of the constant amplitude fatigue tests performed in Task 4 are summarized in Table 11. Corresponding specimen and test set-up configurations for these tests are included in Figure 52. Photographs of representative failed specimens are shown in Figures 55 through 58.
- c. Spectrum Fatigue Results of specimens subjected to spectrum fatigue are presented in Table 12. Test set-up configurations for spectrum fatigue are shown in Figure 52. Representative specimen failures are shown in Figure 59.

TABLE 10. STATIC TENSION STRENGTH TEST DATA

Keds of	4					-							(•)						•	44.					Θ	@	Θ	0	6	•
Strain at Failure (µin./in.)	Average	1 401	104'-	SC - C	0,73	674'1	C7 - C	785	200	201 - 6	1 203	1,307	71 = C	900	95.	# H //	, ,	2 to 10	2; 2;	955	255. Fe = 0	0 - 0	95.	81 / 7 3 E F F S	2 - 2	37. 1	20/1	99 - 0	5.		DC - C
Strain of (Lin.	individual	1,460	1,352	1,390	1,458	1,410	1,420	858	099	840	1,400	1,380	1,380	1,925	1,900	1,900	2,670	2,665	2,600	1,235	1,365	1,400	2,665	2.575	2,915	1,835	1,705	1,755	4,140	4,205	4,145
Failing Load (16)	Average	7 533	, CE, 1	211 - 8	1 26.6	DC7'/	0 - 0	4 212	717.	790 = 8	660.	1,063	/R = 0	7447	14,	Ω# = δ	0.00	0.657	5 = 1/3	000	562,1	2 - 340	150	(an's	5	740.0	140,0	ט י	12561	100'71	5
Fadin,	Individual	7,380	7,500	7,720	7,150	7,300	7,300	4,820	3,475	4,340	7,000	7,130	6,940	005'/	7,560	7,430	8,050	7,750	7,750	6,850	7,500	7,350	000,	7,800	8,400	9,060	9,680	9,300	12,530	12,640	12,530
Hole Dia	\bigcirc	0.3748	0.3746	0.3747	0.3748	0.3745	0.3748	0.3747	0.3746	0.3745	0.3748	0.3747	0.3748	0.3746	0.3746	0.3748	0.3754	0.3749	0.3749	0.3745	0.3747	0.3747	0.3752	0.3749	0.3750	0.3753	0.3745	0.3745	0.3749	0.3753	0.3750
Width	(in.)	2.254	2.255	2.255	2.255	2.255	2.253	2255	2.253	2.255	2.255	2.255	2.254	2.253	2.253	2.253	2.251	2.251	2.256	2.253	2.253	2.253	2.251	2.250	2.249	2.254	2.255	2.253	2.251	2.251	2.251
Thickness	(in.)	0.2092	0.2184	0.2212	0.2274	0.2258	0.2298	0.2149	0.2058	0.2276	0.2249	0.2259	0.2270	0.2297	0.2250	0.2278	0.2443	0.2381	0.2300	0.2313	0.2227	0.2289	0.2462	0.2365	0.2438	0.2205	0.2299	0.2290	0.2318	0.2439	0.2418
Fastaner	Torque (inlb)												c c	0 + 0 =														031	B		
Test	Тепр	RT 0.2092 0.2184 0.2274 0.2298 0.2298 0.2298 0.2299 0.2297 0.2297 0.2381 0.2381 0.2381 0.2382 0.2382 0.2382 0.2383 0.2382 0.2383 0.2283 0.2																													
Moisture	Content (% by wrt)		N/A		38.0	0.82	0.82	0.78	0.71	0.82	0.89	0.91	0.86									¥/¥						-			
Test	Variable										Baseline								-			Stacking	Sequence				-	Torque	ďΩ		
Percent	0-/45-/90° Pries						0	50/40/10							30/60/10			19/76/5		50/40/10	Special	No. 26	19/16/5	Special	No. 31		50/40/10			19/16/5	
Specimen and Test Setup	Configurations (See Figures)												A78 628	W7, 'W/+						L								478 528	77.		
Specimen	Number	1-24-41	1.27.23	1.27-31	1.24.20	1.27.30	1-24-21	1-27-5	1-27-8	1-27-14	1-24-24	1-24-26	1-27-18	1-25-10	1.25-16	1-25-18	1-32 35	1.32-43	1-32-41	2-26-10	2.26.16	2.26.18	2.31.10	2.31.16	2.31.18	3.28.9	3-28-35	3.24.10	3.32-4	3-33-33	3-33-31
L		<u> </u>	L	L	L	<u>L.</u>	l	L	L	L	<u></u>	<u> </u>	√		L	L	I	l	<u> </u>	<u> </u>	Щ	<u> </u>	L	۱	L.,	!	L		L		

GP13-0115-205

TABLE 10. (Continued) STATIC TENSION STRENGTH TEST DATA

Specimen	Specimen and Test Setup	Percent nº/ac/onº		Moisture	Test	Fastener	Thickness Width	Width	Hole Dia	Failin	Failing Load (1b)	Strain at Fail (µim./in.)	Strain at Failure (µin./in.)	Mode of Fadure
Number	Configurations (See Figures)	o / saile	Variable	(% by wt)	Тепер	(in. 1b)	(in.)	(in.)	\bigcirc	Individual	Average	Individual	Average	\ \$
4.29.14			C. Prometry				0.2312	1.507	0.3745	7,620		2,040		
4.29-19	478, 52A		e/d = 3				0.2145	1.507	0.3745	7,080	7,440	2,035	0177	(4)
4.29.21	•	05/05/0	W/d = 4				0.2209	1.506	9.3746	7,620	S = 312	2,555	S67 = S	
4.29.29		01/04/06	Geometry				0.2289	1.507	0.3745	7,470	0.0	2,095	1	$\widehat{\mathcal{Z}}$
4.29-18	47C, 52A		6/d = 4				0.2236	1.506	0.3745	7,620	0.10,	2,185	2,193	(
4-29-11	•		7 = p/w				0.2171	1.506	0.3748	7,740	S = 135	2,210	ng ₌ α	<u>क</u>)
4-33-10			Geometry				0.2450	1.500	0.3746	9,225	000.5	4,800	0000	<u></u>
4-33-13	47B, 52A		e/d = 3			0 + Gap	0.2370	1.500	0.3748	7,275	7,983	3,480	2,302.5	(4
433.14	•	3/32/61	₩/d = 4				0.2463	1.496	0.3750	7,450	5 = 1,079	3,610	171 - 6	6)
433.22		6/0//6	Senmetry				0.2437	1.124	0.3752	6,420	0.00	₹,005	0000	
433.25	470, 52A		e/d = 3				0.2474	1.124	0.3751	6,280	5,555	3,805	3,900	(m)
433.26	•		₩/d = 3	2	-		0.2430	1.124	0.3752	5,360	۶ - ۱۵	3,890	061 = S	
5-24-29				۲ ۲	Ē		0.2274	2.250	0.3693	8,100	000	1,730		0
5.24.48	47E, 52C		Fastener				0.2124	2 2 5 4	0 3693	7,350	3, 100	1,548	1,5/6	3
5.28-34							0.2278	2.254	0.3713	8.850) = /2 0c/ = 0	1,450	74! = 0	(-)
6-28-7		•	Single.				0.2079	2.254	0.3748	8,950		1,776		3
6-27-37	47A, 52C		Shear				0.2306	2.25~	0.3747	9,100	UC2,8	1,830	DS 8.	(-)
6-27-35		50/40/10	Head			150	0.2298	2.253	0.3748	9,700	7 ES - S	1,890	00-0	(
6-24-35		0	Single-			2	0.2254	2.253	0.37480	9,050	000	1,395	0371	6
6-28-25	47F, 52E		She'r Counter				0.2230	2254	0.37460	8,400	0,200	1,500	5	. 1
6-27-43	•		Sunk Head				0.2148	2.254	0.37480	8,150		1,455	5 ± 53	①
7-39-1							0.2254	2.250	0.375?	7.860	7007	1,465	007.	
7-30-8	47A, 52A		Porosity			0 + Gap	0.7321	2.250	0.3757	7,460	י שפי,	1,395), 4 66	(44)
7.30-15	•			-			0.2271	2.250	0.3747	8,100	5 = 523	1,545	5 = 13	
														Apr. 21.00.00

(C) following hole diameter dimension indicates that hole was countersunk

e/d = 3 for all specimens except as noted in the test variable column

 $\mathbf{w}/d = 6$ for all specimens except as noted in the test variable column

20 ply thickness for all specimens with 50/40/10 or 36/60/10 layups. 21 ply thickness for all specimens with 19/76/5 layup Notes:

Specimens were thermal spiked prior to testing (2) <9

Mode of failure legend: $(2) \cdot (1)$ implies a combination tension-cleavage-shearout mode of failure

(3) Net section mode Tension-classage mode net section and shearout combination. Failure extends along shearout path and net section path

Shearout mode 00 and 900 plies "pushed" out in front of bolt hole

(4) Bearing mode failure localized directly in front of bolt

Figure 52. Task 4 Test Setups

Figure 52. Task 4 Test Setups

Test Configuration 52D

Figure 52. (Continued) Task 4 Test Setups

Figure 52. (Concluded) Task 4 Test Setups

Figure 53. Static Net Section and Tension - Cleavage Modes c' Failure

Figure 54. Static Bearing and Shearout Modes of Failure

TABLE 11. CONSTANT AMPLITUDE FATIGUE TEST DATA

				1				1			7	T	Y		_			T		T						7			T		
Mode of Failure	\Box	•	0	(Θ	€	Θ	©	•	\in	9	9	ၜ	① ③	(O)	9	٩	9	① ②	3	€		6	9	•	Θ	(9	9	0.0	9
Residual Failing Load	(B)	١	8,975	1	8,820	1	9,220	8,920	!	8,540	9,140			8,940	8,520		ı		8,430	11,420	ı		10,460	10,820	-	5,880		1		10,140	I
Hole Dia (in.)	⊙	0.387	1	0.387	_	0.388	1	1	0.398	_	ı	0.420	0.407	0.410	0.426	0.427	0.425	0.443	0.444		0.408	0.390	١	1	0.393	0.398	0.414	0.394	0.410	0.409	0.408
Total Head Deflection (in.)	S	0.0312	0.0358	0.0382	0.0468	0.0372	0.0368	0.0378	0.0454	0.0418	0.0450	0.0736	0.0622	0.0608	0.0822	0.0790	0.0808	0.0848	0.0824	0.0420	0.0522	0.0414	0.0434	0.0458	0.0394	0.0417	0.0610	0.0381	0.0610	0.0612	0.0600
Cycles to Failure	•	(H) 000'S9	920 (H)	2,500 (H)	371 (H)	18,000 (H)	30,000 (H)	56,760 (H)	320,000 (H)	575,000 H)	1,565,000 (N)	2 (M)	22,950 (H)	12,700 (H)	6,493 (H)	2,690 (H)	9,730 (H)	144,900 (H)	129,000 (H)	3,130 (H)	420 (H)	950 (H)	32,090 (H)	18,820 (H)	111,230 (H)	(N) 000'000'1	961,000,(H)	(N) 000'000'1	10,120 (H)	4,470 (H)	11,860 (H)
Cyclic Rate (Hz)	\bigcirc	۸		2		1 and 5			9			ì		L	n		2	2	>		2		0		ഹ		5 and 15			2	
₹	Min	540		640			550			200			-5,000			-5,500		5	-4,5UU		640			,	540		515			-5,000	
Load (lb)	Max	5,400		6,400			5,500			5,000			5,000			5,500		9	4,500		6,490				5,400		5,150			5,000	
Stress Ratio						,									-1.0									,	- C-					-1.0	
Hole Dia	\triangleleft	0.3748	2.255 0.3748 2.254 0.3749 2.254 0.3748 2.254 0.3748 2.255 0.3747 2.255 0.3748 2.255 0.3748 2.254 0.3748 2.255 0.3748 2.255 0.3749 2.255 0.3749 2.255 0.3749 2.255 0.3749 2.255 0.3749 2.255 0.3748 2.255 0.3746 2.255 0.3746 2.255 0.3746 2.255 0.3746 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748														0.3748	0.3747	0.3747												
Width (in.)		2.255 0.3748 2.254 0.3749 2.254 0.3748 2.254 0.3748 2.254 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3748 2.255 0.3749 2.255 0.3749 2.255 0.3748														2.255	2.255	2.255	2.255												
Thickness (in.)		0.2255	0.2227	0.2308	0.2233	0.2293	0.2188	0 2256	0.2285	0.2218	0.2243	0.2250	0.2312	0.2239	0.2302	0.2246	0.2255	0.2306	0.2305	0.2317	0.2162	0.2238	0.2298	0.2248	0.2249	0.2269	0.2191	0.2325	0.2258	0.2217	0.2317
Fastener Torque	<u>ė</u>								•							0+630															
Test Variable																Racolino	3						-								
Percent 0 ⁰ /45 ⁰ /90 ⁰	S S									50/40/10						-										30/60/10					
Specimen and Test Setup Configurations	(See Figures)						47A, 52A									4/A, 52F								47A, 52A						47A, F.2F	
Specimen		1-28-22	1.24-6	1-24-22	1.28-10	1.24-36	1-27-39	1.28.14	1-28-36	1-28-4	1.27.2	1-28-31	1.24.19	1-27-15	1.24-38	1-28-33	1.27.38	1-24-23	1.24-31	1-25-5	1-25-27	1-25-2	1.25.25	1.25-9	1-25-20	1-25-30	1-25-23	1-25-12	1-25-25	1-25-15	1.25-6

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

Mode of Failure	(Z)	9	(G)-(Z)	(9	(I)-(9)	(9)	9	(6)	9	•	\bigcirc	(E)	. (⊙		3	9	(O-(O		<u> </u>		6	9.0	(4)	<u> </u>	\odot	(-	Э	•	(-)
Residual Failing Load	(B)	-	10,920	. 1	9,600	l		11,420	11,260	1	10,560	11,420	1			9,900	١	11,680	-			10,480	10,700	_		-	8,540	8,920	1	8,780	9,040
Hote Dia (in.)	\bigcirc	0.421	0.424	0.523	0.438	0.449	0.435	,	١	0.387	-	_	0.376	0.396	0.402	0.399	0.409	0.409	0.413	0.401	0.410	0.405	0.428	0.437	0.427	0.394	-	-	0.474	1	-
Total Head Deflection (in.)	&	0.0800	0.0798	0.1336	0.0812	0.0972	0.0796	0.0403	0.0404	0.0396	0.0394	0.0280	0.0200	0.0612	0.0600	0.0596	0.0618	0.0627	0.0628	0.0614	0.0656	0.0624	0.0800	0.0828	C.0808	0.0470	0.0326	0.0358	0.0616	0.0776	0.0670
Cycles to Failure	₩	2,720 (н)	4,100 (H)	6,790 (н)	36,630 (H)	41,900 (H)	45,800 (H)	118,550 (H)	(н) 025'8	23,110 (H)	205,020 (H)	318,600 (H)	1,000,000 (N)	(H) 0EE'LLZ	210,450 (H)	1,100 (H)	20,400 (H)	30,200 (H)	25,210 (H)	(H) 000'9	5,450 (H)	8,520 (H)	493,040 (H)	423,410 (H)	292,850 (H)	(H) 109	301 (H)	301 (H)	24,410 (H)	11,660 (H)	7,950 (H)
الارم الاعت الاعت	\bigcirc	5	,	,		>	-	5	0,	2	5	5 and 10	10	E and 16	2 2 2 2 2				2	_				>			2			20	
4	Min		-5,400		-	4,400			620			510			700	L		-4,500			-5,100			-3,800			620			920	
Load (ib)	Mex		5,400			4,400			6,200			5,100			7,000			4,500	-		5,100			3,800			6,200			5,500	
Stress Ratio	:			-	2							0.1									-1.0							0.1			
Hote Dis	\triangleleft	0.3748	2.255 2.254 2.254 2.251 2.251 2.251 2.251 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.250														0.3745	0.3745	0.3745												
Width (in.)		2.255	2.255	2.256 2.254 2.254 2.254 2.251 2.251 2.251 2.249 2.250														2.254,	2.253												
Thickness (in.)		0.2257	0.2330	0.2305	0.2203	0.2210	0.2292	0.2422	0.2315	0.2410	0.2296	0.2410	0.2442	0.2391	0.2422	0.2233	0.2352	0.2449	0.2450	0.2450	0.2413	0.2451	0.2442	0.2384	0.2441	0.2292	0.2194	0.2216	0.2331	0.2299	0.2248
Fastener Torque	(Jn1b)														•	,													*		
Test												Baseline																Stacking	Sequence		
Percent 0 ⁰ /45 ⁰ /90 ⁰	Nies			30/60/10												3/32/01											50/40/10	Special	No. 26		
Specimen and Test Setup Configurations	(See Figures)			474 525	77.							47A, 52A									47A, 52F							47A, 52A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Specimen		1-25-7	1-25-13	1-25-14	1-25-1	1-25-28	1-25-22	1-32-19	1-32-32	1-32-36	1-32-9	1-32-10	1-33-6	1-32-3	1.33-1	1-32-17	1-32-40	1-33-2	1-33-36	1-32-46	1-32-23	1-33-34	1-32-28	1-32-18	1-33-35	2-26-5	2.26.27	2-26-2	2.26.25	2.26-9	2-26-20

6012-0116-211

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

35 4		ூ	()	9	0	9	©	ම	Θ	(S)	(I) (S)	ၜ			0				③		0	ම	(C) (G)		<u>ඉ</u>	(2) (3)		<u> </u>	1	(C) (G)
Residual Faiting Load	a	1	8,040	9,280	_	7,940		1		9,000	ŀ	8,080	1	12,140	10,800	11,000	12,100	16,900		ı		11,000	1	10,380		ı	11,360		ı		11,380
Hota Dia (in.)	<u>6</u>	0.381	0.386	0.390	0.408	0.409	0.415	0.423	0.487	0.426	0.431	0.434	0.436	-	1	1	_	_	0.390	0.396	0.410	0.407	0 405	0.408	0.417	0.402	0.407	0.407	0.427	0.439	0.432
Total Head Deflection (in.)	\sqrt{s}	0.0229	0.0288	0.0267	0.0620	0.0612	0.0636	8:80'0	ŀ	0.0820	0.0812	0.0796	0.0830	0.0396	0.0416	0.0402	0.0396	0.0448	0.0396	0.0462	0.0747	0.0561	0.0600	0.0666	0.0608	0.0616	0.0604	0.0610	0.0824	0.0820	0.0806
Cycles to Failure	√	1,488.000 (N)	1,000,000 (N)	(N) 000'000'1	17,630 (H)	5,170 (H)	12,380 (H)	(H) 017'S	(W) 000'9	7,110 (H)	28,330 (H)	92,210 (H)	(H) 07E,77	(H) 070,1	750 (H)	1,140 (H)	1,298,900 (N)	330,000 (H)	452,500 (H)	(N) 000'000'1	1,820 (H)	1,000,000 (N)	(H) 058'6	14,430 (H)	(H) 06L'L	2,090 (H)	3,490 (H)	2,240 (H)	93,210 (H)	74,180 (H)	126,070 (H)
Cyclic Rate (Hz)	€	5	5 and 10	۸		2			2			>			9		ş	2	J. F J	ວand ເບ	5	5 and 10				ռ				>	
$\langle \overline{\psi} \rangle$	Min	500	3	530		-5,000			-5,500			-4,500			099			- 260			910			-5,000			-5,600			-4,200	
E G	Max	ב סטט	2,000	5,300		2,000			2,500			4,500			905'9			2,600			6,100			2,000			5,690			4,200	
Stress			0.3747 0.3748 0.3748 0.3747 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3749 0.3756 0.3756 0.3756 0.3759 0.3759 0.3759 0.3769 0.3769 0.3779 0.3769 0.3779 0.3779																												
Hole Dia (in.)	\bigcirc	0.3747	2.252 0.3747 2.253 0.3748 2.253 0.3748 2.253 0.3748 2.254 0.3744 2.254 0.3746 2.254 0.3746 2.253 0.3746 2.253 0.3746 2.253 0.3746 2.253 0.3746 2.251 0.3756 2.250 0.3764 2.250 0.3764 2.250 0.3764 2.250 0.3764 2.250 0.3764 2.250 0.3768 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3748 2.250 0.3756														0.3756														
Width (in.)		2.252	2.253 2.253 2.253 2.253 2.254 2.254 2.253 2.253 2.250														2.250														
Thickness (in.)		0.2343	0.2160	0.2336	0.2311	0.2091	0.2291	0.2249	0.2336	0.2260	0.2132	0.2275	0.2293	0.2393	0.2280	0.2315	0.2426	0.2360	0.2380	0.2454	0.2246	0.2432	0.2417	0.2270	0.2370	0.2327	0.2411	0.2347	0.2256	0.2380	0.2423
Fastener Torque	(inlb)									1-11			<u> </u>			0 + 0														-	
Test Væriable							-									Stacking	Sequence					,									
Percent 0°/45°/90°	Zies					50/40/10	Special	Fanel No 26	3													19/76/5	Special	Panel							
Specimen and Test Setup Configurations	(See Figures)		47A, 52A						47A, 52F			-						47A, 52A									47A 52A				
Specimen		2-26-30	2-26-23	2-26-12	2-26-29	2.26-15	2-26-6	2.28-7	2-26-13	2-26-14	2-26-1	2.26.28	2.26.22	2-31-5	2-31-27	2-31-2	2-31-25	2.31.9	2-31-20	2-31-30	2-31-23	2-31-12	2-31-29	2-31-15	2-31-6	2-31-7	2-31-13	2-31-14	2-31-1	2-31-28	2:31:22

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

								$\overline{}$			Т				1	\supset			7				Т	Т	Т	T	T				1	_/	3.5
Mode of	Failure	1	(•	9		0		9	(9		(F)	-	2)	(2)	(S)		(E)			0)		₹	<u>2</u>	€	<u></u>	(5)		(<u>r</u>	9	$(\widetilde{5}) \cdot (\widetilde{3})$	111 3110
Residual	Faiking	٩		ŀ		10,580	11,220			ı				9,800	-	9,360				1					12,580	· — Ŧ	-	· ·				13,240	
_		9	1	ı	-	-	0.373	0.375	-	-		-	-	0.449	_	0.493	-	ı	-	1	-	-		0.384	0.382	0.382	_		1	0.434	0.395	0.397	
Total Head	Deflection (in.)	<u>(5)</u>	1	1	1	0.0164	0.0166	0.0168	1	1	1	0.0550	١	0.0800	0.0552	0.0800	1	0.0736	١	0.0492	1	1	1	0.0529	0.0494	0.0496	1		0.0480	0.0800	0.0792	0.080.0	
1	Failure	⟨₽⟩	415,270 (F)	92,020 (F)	480,270 (F)	1,000,000,1	1,000,000 (N)	1,000,000 (N)	207,130 (F)	59,100 (F)	2,530 (F)	188,640 (H)	145,770 (F)	92,000 (H)	12,140 (H)	63,560 (H)	57,510 (F)	21,340 (H)	16,230 (F)	23,280 (H)	850,200 (F)	406,990 (F)	431,440 (F)	22,750 (H)	9,843 (H)	9,310 (H)	3 (M)	12,710 (F)	16,250 (F)	(H) 086'9	3,840 (H)	4,550 (H)	
Cyclic	Rate (Hz)	⊘		L	1	Ul gue c	•		24 7 7	ci pue c	5					>						-	ol band lu		,	<u>-</u>	_	_	r 		2		
	$\overline{\langle}$	Min		790			670			980			-6,700			-7,400			-8,200			880			1,906			1,100		ļ	-8,800		
	(<u>a</u>	Max		7,900			6.700			8,800			6,700			7,400			8,200			8,800			10,000			11,000			8,800		
	Stress			2.254 0.3740 2.254 0.3745 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3746 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3745 2.254 0.3746 2.254 0.3751 2.250 0.3751 2.250 0.3751 2.250 0.3751 2.251 0.3751 2.252 0.3752 2.251 0.3751 2.251 0.3752 2.251 0.3752 2.251 0.3752 2.251 0.3753 2.251 0.3752 2.251 0.3753 2.251 0.3750 2.251 0.3750 2.251 0.3750 2.251 0.3750 2.251 0.3750 2.251 0.3750														Υ	-														
903	Dia (iii)	<-	0.3748	0.3748 0.3745 0.3745 0.3746 0.3746 0.3746 0.3748 0.3746 0.3747 0.3746 0.3747 0.3746 0.3747 0.3746 0.3747 0.3746 0.3747 0.3746 0.3747 0.3746 0.3747 0.3746 0.3757 0.3756 0.3756														0.3755															
	Width		2.253															2.250															
	Thickness	 E	0.2298															0 2476	,														
	Fastener	(intb)				•								_	_		180																_
	Test	Variable															Torque	ď															
	Percent	Pies					-			_		50/40/10														3/32/91	6/07/61						
	Specimen and Test Setup	Configurations (See Figures)								- -							47A 57B				- 1						1	-			T		
	Specimen	Number		3-24-3/	3-28-15	3-27-21	3-24-46	3-27-10	2-78-0	3-78-71	3-24-14	3-82-8	3-24-45	3.28-2	3-78-18	3-27-17	3-24-5	3.24.34	3.27.40	3-24-12	3-28-1/	5-35-5	3-36-34	3-32-31	3-32-13	3-32-44	_i_		3-25-38	3-32-15	3-32-7	3-32-7	3-32-27
L					_		1		Щ.							<				<							<						

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

Mode of Failure		(2)	(C) (S)	9	(C) (9)	@	•	6	9	6	9	E	9	⊙	© (i)	•)	Θ	0	Э	(2)	(4)	Θ	⊙	6	•)	(6	9	①
Residual Failing Load	<u>a</u>	1	12,840	-	12,940	,	_	9,700	9,500		ı	8,960	8,880	1	8,420	,		9,220	11,320	086′6	10,440	1		9,575	1	8,900	9,320	-	8,660	9,520	,
Hole Dia (in.)	(0.437	; 43 4	0.400	0.450	0.486	0.408	-	_	0.388	0.412	-	-	0.392	0.392	0.393	0.401	_	_	-	_	0.389	0.391	0.391	0.393	_	-	0.385	. 1		0.388
Total Head Deflection (in.)	\odot	0.0816	0.0840	0.080.0	0.080.0	0.0800	0.0826	0.0540	0.0464	0.0410	_	0.0400	0.0424	0.0412	/7:50	0.0408	0.0510	0.0418	0.0544	0.0402	0.0392	0.0380	0.0400	0.0400	0.0418	0.0398	0.0414	0.0396	0.0395	0.0394	0.0390
Cycles to Failure	△	30,130 (H)	29,820 (H)	27,510 (H)	116,160 (H)	86,730 (H)	109,280 (H)	750 (H)	100 (H)	200 (H)	3,370 (F)	2,620 (H)	1,130 (H)	23,420 (H)	25,320 (H)	20,730 (H)	270 (M)	165 (M)	133 (₩)	5,190 (H)	212,000 (H)	123,680 (H)	5,300 (H)	6,680 (H)	13,910 (H)	311,820 (H)	22,610 (H)	479,450 (H)	368,950 (H)	245,110 (H)	333,730 (H)
Cyclic Rate (Hz)	\bigcirc	-		>	•		•		S			2			5 and 15			_			2			ıc.		5 and 10			2		
4	Min		-7,400			-6,630			930			009	-		570			920			260			610			260			480	
Load (ib)	Max		7,400		1	6,600	-		6,300			000′9			5,700		3-1-1-1	6,500			9,600			6,100			2,600			4,800	
Stress Ratio				-	0.							0.1									0.1							-	- - 5		
Hole Dia (in.)	\triangle	0.3749	03760	0.3752	9.3753	0.3758	0.3749	0.3745	0.3746	0.3745	0.3745	0.3745	0.3745	0.3745	0.3745	0.3745	0.3745	0.3747	0.3745	0.3748	0.3748	0.3747	0.3746	0.3748	0.3746	0.3750	0.3751	0.3756	0.3752	0.3752	0.3753
Width (in.)		2.234	2.236	2.259	2.225	2.244	2.249	1.505	1.505	1.504	1.505	1.504	1.504	1.506	1.505	1.505	1.504	1.505	1.504	1.504	1.505	1.504	1.504	1.504	1.504	1.483	1.500	1.499	1.496	1.497	1.500
Thickness (in.)		0.2455	0.2308	0.2332	0.2438	0.2390	0.2448	0.2313	6.2277	0.2320	0.2267	0.2220	0.2173	J. 2274	0.2278	0.2284	0.2304	0.2188	0.2268	0.2151	0.2246	0.2247	0.2267	0.2247	0.2278	0.2444	0.2357	0.2446	0.2387	0.2336	0.2429
<u> </u>	(an10)		-	Uar	2													L	0 + Gao	J	.	4	-								
Test Variable				Torque	ď					- 1	Geometry	e/d = 3	4 = D/ X							Geometry	b/d = 4	4 = D/ ★						Geometry o/d = 3	4 = p/M		
Percent 0°/45°/90°	Si Es			3/32/01	200									-		01/07/03	01/04/00							-				19/36/61	2		
Specimen and Test Setup Configurations	(See Figures)			47A 52R	7, 7,							478, 52A						_			47C, 52A							478 52A	(2)		
Specimen	-	3-32-45	3.32 48	3-33-37	3-32-21	3-32-47	3-33-4	4.29.10	4-29-28	4-29-8	4.29.26	4.29-13	4.29.22	4-29-30	4-29-25	4-29-16	4-29-12	4-29-17	4-29-7	4-29-20	4.29.23	4.29.24	4-29-9	4-29-15	4.29.77	4-33-8	4-33-17	4-33-7	4-53-15	4-33-18	4-23-11

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

			T								7				Т		r	П	7	Ī		1					-			l		١	1	Ņ
4		\leq				(ම				(E)		<u></u>			E		Э	Θ	9	Θ	0	ම ව	<u>e</u>		•)	•) 		•)	Э	22-5118-230
Period		ê	25.	3 2	3,0	8,820	6,550	5,360				1				7,830	7,980	-	8,340		11,800	8,050	12,150	7,950	9,060		1			9,120	' 		9,250	
10 E	3 3	«		,	1	,	-	-	1		-	_	-	1	'	0.415	0.391	0.421	0.417	0.415	1	1	-	-	0.373	0.374	0.373	<u> </u>	1	0.390	0.388	0.382	0.384	
Total Head	Deflection (ia.)	≪		DCD.n	0.0504	0.0502	0.0388	0.0396		ł	1	0.0324	0.0388	_	_	0.0784	0.0304	0.0610	0.0584	0.0609	0.0148	0.0624	0.0188	0.0612	0.0150		_	0.0334	0.0468	0.0400	0.0444	0.0404	0.0415	
	Cycles to Failere	\triangleleft		241,410 (H)	334,060 (H)	76,030 (H)	12,810 (H)	20,480 (H)	10,260 (F)	95,260 (F)	52,380 (F)	132,630 (F)	10,210 (F)	1,080 (5)	1,190 (F)	3 (M)	1,000,000,1	(H) 082,780	1,004,880 (N)	11,450 (H)	1,000,000 (N)	740 (H)	530,000 (H)	(H) 094	1,000,000 (N)	1,000,000 (N)	1,000,000 (N)	1,000,000 (F)	492,540 (F)	231,419 (H)	S,650 (H)	1,000 (H)	1,230 (H)	
Confee	Part (F	 } <	1	5 and 10	1		2	1	.	2	L	1	5				5	4		>	=	5	5 and 10	2			5 and 10	2				<u>ب</u>		
	<u>~</u>		_	290			25			490			289		·	550	e e		450		790	550	088	550		230		069	 _	750		810		
	P (E)		×	5,900			5.400			4,900			5,800			5 500	300		2 500	,	7 901:	2 500	8 800	5,500		5,900		6,900		- - - - - - - - - - - - - - - - - - -		8 100		
r	Stress	Ratio			0.1						0.1									-							_	·	; T-	; 	-			
	2 2	<u> </u>	57	0.3759	0.3753	0.3747	0.3748	0.3752	0.3753	0.3750	0.3747	0.3750	0.3749	23751	0.3750	0.3697	0.3697	0.2697	0036	0 2702	0.3702	2000	0.3039	0.3695	0.3750	0.3748	0.3749	0.3746	0.3748	0.3747	0.3745	0.375.0	0.3750	;
	Width	.j		1,495	1.496	1 500	1 136	1 125	1755	175	175	1.124	1.124	1 175	1 124	2 26.2	2 753	2.20	707.7	25.2	2.73	2.233	25.27	2 254	2 75.4	2.253	2.253	2754	2.250	2,754	2.254	2 254	2 25.4	4.4.37
	hickness	(in.)		0.2434	0.2434	2398	0.2426	0.470	0.24.10	0.24.10	0.2434	0.2405	0.2403	0.2450	0.2480	00000	0.2230	0.22.10	0677.0	U.2250	0.2254	0.2179	0.2270	0.22.0	0 2244	0.22	0.2250	0 22 23	0 2779	0.22.0	0 3336	0.22.0	0.22.0	0.21%
	<u> </u>			1		L_		_ +			0 + Gap		R								180	den + n	2 2	0 10				9	<u>2</u>					
		Variable			Geometry S	2 - D/3					Geometry	e/d = 3					- 1			Factorior	Fie								Single	Protruding	Head			
	Percent	00/450/980	Ě		-					19/76/5					*										50/40/10									
	-	Test Settup Configurations	(See Figures)			4/B, 52A				 ,		47D, 52A									47E, 52C									47A, 520				
		Specimen			4-33-12	4-33-9	4-33-15	4-33-20	4-33-29	4-33-19	4-33-28	4-33-30	4-33-23	4-33-24	4-33-21	4-33-27	5.28.11	5.24.7	5-28-21	5-27-44	5-28-12	5-27-47	5-28-37	5-28-20	5.27.24	6-24-47	6-24-43	6-24-40	6-27-46	6.27.13	6.28-19	6-28-23	6-27-7	6-28-32

TABLE 11. (Continued) CONSTANT AMPLITUDE FATIGUE TEST DATA

Mode of Faiture	3	•	(?)	①	(2)	9	<u></u>	(2)	E) (•		(-	- Э		(E)		<u>-</u>		0	9	① ⑤	0	(I)	(9)	(I) (I)	(4	9
Residual Failing Load	ê	-	8,000	-	8,550		ı	8,500	9,780			10,160	9,930	9,920	19,000	,	9,460	10,510	9,940			10,460		16,320	,	10,060		,
Hote Oua (in.)	9	0.377	0.376	0.374	0.380	0.383	-	0.470	0.384		0.379	_	1	1	-	0.377	-	1	-	0.428	0.460	0.444	0.411	0.404	0.400	0.433	0.442	0.419
Total Head Defection (in.)	<u>\$</u>	0.0170	0.0184	0.0170	0.0436	0.0440	0.0460	0 0353	0.0294	1	١	0.0411	0.0400	0.0460	0.0394	0.0350	0.0550	96140'0	0.0494	0.0796	0.0812	0.0820	0.0682	0.0634	0.0590	0.080.0	0.0828	0.0740
Cycles to Failure	[]	1,000,000 (N)	1,000,000 (N)	968,000 (N)	2 (14)	2 (14)	381,660 (F)	(N) 000'009'i	(N) 000'000'1	315,280 (F)	2 (M)	5,560 (H)	(н) 051'9	388,730 (H)	(H) 091'E69	(H) 000'056	180,550 (H)	31,930 (H)	(H) 050'6	30,220 (H)	75,570 (H)	(H) 006'19	4,150 (H)	(H) 098	3,410 (H)	IH) 007'67.1	137,390 (H)	93,560 (H)
Cyclic Rate (Hz)	(7)		5 and 10				5 and 10	=	>	5 and 10	1		n		0		S and 10		ພາ		>			ĸ			>	
4	Min		410		70,5	3	099	553	D79	099	099	073	\$		280			059			-5,000			-5,900			-4,500	
Peo-J	Max		4,100		7.050	200,	009'9	900	۵,200	6,600	009'9	904.5	00 *		5,900	-		909,9			5,000			2,900			4,500	
Stress Ratio						0.1									0.1									-1.0				
Hoke (in.)	\exists	0.3747C	0.37480	0.37490	0.37490	0.3749C	0.37480	0.37480	0.37460	0.3748C	0.3750	0.3746	0.3746	0.3746	0.3750	0.3758	0.3749	0.3750	0.3752	9.3747	0.3746	0.3745	0.3749	0.3753	0.3749	0.3750	0.3748	0.3752
Width (in.)		2.754	2.7.52	2.754	2.253	2.254	2.251	2.254	2.254	2.254	2.251	2.252	2.251	2.252	2.251	2.250	2.253	2.250	2.251	2.250	2.250	2.251	2.252	2.250	2.250	2.249	2.250	2.237
Thickness (in.)		0.2230	0.2177	0.2212	0.2303	0.2180	0.2:22	0.2168	0.2219	0.2207	0.2326	0.2347	0.2353	0.2353	0.2329	0.2337	0.2346	0.2367	0.2332	0.2340	0.2334	0.2361	0.2335	0.2364	0.2347	0.2325	0.2358	0.2354
Festener Torque (in Jb)				•		180		•					-					0.0	765									
Test Variable					Single									Dagger														
Percent 0°/45°/90° Plex						·									50/40/10													
Specimen and Test Setup Configurations	Test Setup Configurations (See Figures) 47F, 52E														47A, 52A									47A, 52F				
Specimen Number		\$27.25	5.74.2	6-28-5	6-27-12	6-24-17	6-28-16	6-24-33	6-27-34	6-27-9	7-30-2	7.30-9	7-30-20	7-30-4	7.30-11	7-30-22	7.30-6	7.30-13	7-30-32	7.30-3	7.36-10	7.30-21	7-30-5	7:30-12	7-30-28	7-30-7	7.30.14	7:30-34
<u> </u>		<u> </u>	L	L	زا		L	L	Ш		L					 ^					<u> </u>		L.,.,			L	<u></u>	

TABLE 11. (Concluded) CONSTANT AMPLITUDE FATIQUE TEST DATA

Notes:

"C" following hole diameter dimension indicates that hole was countersunk. Dimension noted is the diameter of the hole prior to testing.

Loads were based upon selected percentages of the ultimate static tension strength.

"V" indicates that rate was varied during testing to permit the MTS machine to function correctly. " " indicates that specimen failed while generating the hysterisis loops for Cycles 1 through 3.

Cycles to failure data were determined according to the following criteria: (H) - Testing stopped when total head deflection data, as determined by hysterisis loop data, approached or exceeded a preselected dimension. (N) = Testing stopped. (M) = Total head deflection exceeded preselected dimension while generating initial hysterisis loops. (F) = Testing stopped when specimen exhibited complete failure during fatigue cycling.

Total head deflection data were determined from the final hysterisis loop generated for each specimen.

Dimension noted is the major diameter of the elongated hole after shutdown of fatigue testing due to total head deflection data or greater than 106 cycles. "..." in hole diameter column indicates that specimen failed during fatigue cycling which prevented hole measurement or that specimen was tested for residual strength before hole measurement was obtained

Mode of failure legend: (5) - (1) implies a combination bearing (compression) - shearout mode of failure.

Shearout mode 00 and 900 plies 'pushed" out in front of bolt hole

(2) Tension-cleavage mode net section and shearout combination. Failure extends along shearout path and net section path

(3) Net section mode

(4) Bearing mode failure localized directly in front of bolt

Bearing mode failu- 2 localized directly in front of bolt.

Bearing mode (Tension and compression) failure localized directly in front of bolt.

Specimen test results were affected by various anomalies in the test procedures. Specimens affrected by these anomalies and the particular anomaly were as follows:

- 1-28-31 Wrong size bolt used in test setup.
- 1-25-30 Residual strength test conducted with no nut on bolt.
- 3-27-17 Wrong load programmed into MTS machine at restart after generating hysterisis loop at 12,140 cycles resulting in failure of specimen.
- 3-28-17 Specimen failed at 25,140 cycles due to an overload condition in the MTS.
- 3-32-25 Failed during initial startup due to an overload condition in the MTS.
- 7-30-6 Washers not installed between load block surface and bushing head to maintain 0 torque + gap condition.
- 7-30-34 Specimen overloaded on tension side at restart after generating hysterisis loop at 93,560 cycles resulting in excessive hole elongation.

Tension - Cleavage

Shearout

Figure 55. Constant Amplitude (R = 0.1) Tension - Cleavage and Shearout Modes of Failure

Figure 56. Constant Amplitude (R \Rightarrow 0.1) Bearing and Tension - Cleavage Modes of Failure

Figure 57. Constant Amplitude (R = 0.1) Net Section and Tension - Cleavage Modes of Failure

<u>___</u>

Figure 58. Constan' Amplitude (R ≈ -1.0) Bearing Modes of Failure

TABLE 12. SPECTRUM FATIGUE TEST DATA

Mode of Failure	<	8,670 (1) 8,670 (2) - (4)						\in)	(Θ		•		Θ	€	Θ	6	D	Θ		⊙		Θ	(Ð	Θ	②	\odot	(₹
	3 3	L	8,670		l	8,560	اا		8,010		099'8		ı		7,540	-	8,540	-	_	8,080		i	 	8,980	-	1	9,240		8,150		,
Hole dia F	4	905.0	0.374	0.374	0.374	0.374	0.374	,	0.468	0.504	0.377	0.376	0.380	0.376	0.376	0.376	0.374	0.375	0.374	0.409	0.507	0.380	0.374	0.374	0.373	0.398	0.410	0.425	0.434	n.441	
Total Head Deflection		0.1410	0.0210	0.0215	0.0175	0.0170	0.0175	0.2213 (D)	0.1045	0.1360	0.0145	0.0145	0.0190	0.0145	0.0150	0.0145	0.0150	0.0160	0.0125	0.0550	0.1488	0.0265	0.0165	0.0165	0.0160	0.0485	0.0545	0.0615	0.0792	0.0910	9:20
Flight hr to Failure	4	12,000 (H)			16,000 (N)	LI		9,151 (F)	16,000 (N)	8,000 (H)					16,000 (N)	اا				32,000 (N)	25,000 (H)		1M/ 000 CC		L i	L,		16,000 (N)		5,000 (H)	1100
11 3 2 1 3	(8,500			5,500			7,000			3,500			4,000		4,200	4,400	4,600		9,500			2,500			2,000			6,500	_
Hole dia (in.)	4	0.3748	0.3748	0.3747	0.3747	0.3745	0.3747	0.3749	0.3745	0.3745	0.3751	0.3747	0.3745	0.3745	0.3750	0.3753	6.3745	0.3749	0.3745	0.3747	0.3754	0.3749	0.3748	0.3745	0.3745	0.3751	0.3746	0.3747	0.3748	0.3748	9
Width (in.)	<	2.254	2.254	2.255	2.255	2.251	2.255	2.254	2.252	2.255	2.257	2.255	2.253	2.253	2.255	2.253	2.255	2.255	2.253	2.254	2.253	2.254	2.255	2.254	2.252	2.254	2.252	2.254	2.254	2.253	2000
Thickness (in.)	⊚	0.2155	0.2273	0.2267	0.2286	0.2258	0.2131	0.2129	6.2257	0.2143	0.2291	0.2272	0.2279	0.2276	0.2178	0.2271	0.2171	0.2242	0.2280	0.2312	0.2167	0.2275	0.2218	0.2295	0.2208	0.2256	0.2250	0.2250	0.2238	0.2136	00000
Fastener	(inlb)															0 + Gap									-						
Test Jemp	<			•		RT								20026	i_0c7										L	=					
٤ ۽ ٤		0.73	0.78	0.83	0.81	0.74	0.71	0.77	0.84	0.79	ON	Q	0.73	#H	HH	HH.	0.68	0.77	ВН	_					¥¥		_		0.82	0.77	8
Moisture Content	Initial	0.72	0.78	0.83	0.82	0.75	0.72	17.0	0.84	0.78	0.88	0.83	0.86	0.84	6.79	0.84	0.76	0.85	0.81						٧				0.82	0.78	00 0
Test	Variable															Baseline															
Percent 00/450/900	Ties S						-			-						50/40/10			-												
Specimen and Test Setup	Configurations (See Figures)										-	_				47A, 52F															
Specimen	Mumber	1-24-1	1-27-3	1-28-26	1.27.28	1-27-45	1.27.41	1-24-9	1-28-29	1-28-24	1-24-11	1-28-30	1.27.27	1.27-19	1.24.25	1.24.28	1-27-16	1.28-13	1.28.28	1.24.27	1.27.1	1-27-4	1-24-4	1.27.11	1-78-3	1-24-15	1-27-29	1-27-26	1-24-42	1-28-1	

8573-8119-8198

TABLE 12. (Continued) SPECTRUM FATIGUE TEST DATA

		_	_	_				_	_	_	,	-	_				_			_		_				_				
i i<	1 ⊝	(•	Θ		⊙		0	Θ	0	6	9	©		•)	0	6	9	©	(⊙		0	6	Ð	Œ	Θ	Θ	0
Paint 1	9,140		1	8,650		ı		19,400	1	3,360		l	10,680		1		11,280		1	11,120		ı		11,580		ı	8,340	-	8,960	,
# # # (i) ≪	0.374	0.375	0.374	0.422	0.431	0.442	0.374	0.386	0.388	0.373	0.375	0.372	0.399	0.396	0.452	0.391	0.391	0.426	0.374	0.373	0.373	0.373	0.382	0.374	0.373	907.0	0.373	0.444	0.412	0.392
Total Head Deflection (in.)	0.0175	0.0180	0.0180	0.0690	0.0820	0.0930	0.0235	09000	0.0395	0.0160	0.0165	0.0165	0.0455	0.0435	0.0985	0.0465	0.0455	0.0840	0.0195	0.0185	0.0185	0.0225	0.0365	0.0225	0.0160	0.0420	0.0150	0.0820	0.0505	0.0330
Flight M to Failure]	16 000 (N)	(2) 200(0)		7,000 (H)	3,000 (H)			32 000 (8)	32,000 (11)			16,000 (14)	2000	9,000 (H)			32 000 (18)	35,000 111					10000	(N) 000,01		•	5,000 (H)	14,000,01	ופיח חסתיםן
2 1 € <	1	5,500			7,000			6,500			4,900				000	000',				5,000			6,000			6,500			7,000	
₹ 1.1.	0.3745	0.3747	0.3745	0.3745	0.3748	0.3748	0.3745	0.3747	0.3746	0.3747	0.3748	0.3746	0.3745	0.3748	0.3747	0.3754	0.3757	0.3749	0.3748	0.3747	0.3756	0.3746	0.3755	0.3752	0.3745	0.3745	0.3745	0.3747	0.3747	0.3749
	2.253	2.254	2.253	2.251	2.251	2.253	2.255	2.253	2.254	2.255	2.255	2.254	2.255	2.255	2.255	2.251	2.252	2.251	2.251	2.251	2.251	2.251	2.251	2.250	2.255	2.254	2.186	2.254	2.255	2.254
Thickness (in.)	0.2270	0.2236	0.2234	0.2298	0.2270	0.2188	0.2292	0.2296	0.2298	0.2163	0.23ሮ೨	0.2276	0.2323	0.2320	0.2167	0.2429	0.2425	0.2342	0.2410	0.2417	0.2438	0.2431	0.2278	0.2439	0.2277	0.2265	0.2273	0.2207	0.2259	0.2278
Fastener Torque (inlb)															1	5														
Temp <]														H	-														
	0.88	18.0	0.88	0.89	06:0	0.89									_			Š												
Moisture Centent (% by Wt)	0.87	0.81	0.87	0.90	0.83	0.89	<u> </u>											¥.												
Test Variable												:	Baseine														Stacking	Sequence		
Percent 0º/45º/90º Pies			50/40/10	2							30/60/10									19/76/5						0100	Soecial	Panel	No. 26	
	(See Frigues)	-		. —											47A 57E	7, 7,														
Specimen	1-27-20	1-27-6	1.27.22	1.27.36	1-24-32	1-24-15	1-25-21	1-25-3	1-25-17	1-25-8	1-25-4	1-25-24	1-25-26	1-25-11	1-25-19	1-32-11	1-32-14	1-32-24	1-32-26	1-32-28	1-32-12	1-32-30	1-32-1	1-33-32	2.26-21	2.26-3	2-26-17	2-26-8	2-26-4	2-26-24
	16	,				1																								

TABLE 12. (Continued) SPECTRUM FATIGUE TEST DATA

Fries	•	Θ	•	(2)		•		0		•		0	•	(2)	(9		- -	Θ			(-	⊙	\odot	0		(€		0
Rozidus Failing (B) & a	_	8,680	-	11,200	_	ı		11,280		1		10,350	1	10,380			11,220			<u> </u>		2,960		1	12,840			ı		12,100
	0.374	0.374	0.374	0.388	0.390	0.385	0.374	0.374	0.375	0.376	0.373	0.374	0.374	0.374	0.375	0.373	0.373	_	1	_	-	0.373	ı	0.374	0.372	0.368	0.374	0.375	0.394	382
Tetal Head Deflection (in.)	0.0165	0.0170	0.0175	0.0425	0.0380	0.0325	0.0235	0.0220	0.0245	บ.0205	0.0190	0.0200	0.0230	0.0225	0.0225	0.0175	0.0165	0.0255 (D)	0.0220 (0)	_	0.0325 (D)	0.0400	0.0380 (D)	0.0400	0.0300	0.0290	0.0295	0.0260	0.0460	0.0325
Flight for to Failure									16 000 (N)	7								2,450 (F)	2,588 (F)	_	15,373 (F)	16,000 (N)	12,000 (F)				16,000 (N)			
<u>\$</u> 1.5€<		5,500			7,000			000′9			9,000			8,800			9,000			7,300			11,000			11,500			7,400	
Hote dia	0.3746	0.3750	0.3748	0.3753	0.3750	0.3748	0.3745	0.3748	0.3760	0.3760	0.3750	0.3752	0.3745	0.3749	0.3748	0.3748	0.3745	0.3745	0.3749	0.3745	0.3746	0.3754	0.3756	0.3749	0.3747	0.3749	0.3750	0.3752	0.3747	0.3752
Width (in.)	2.254	2.255	2.254	2.249	2.251	2.251	2.251	2.251	2.250	2.251	2.251	2.250	2.255	2.254	2.254	2.254	2.255	2.255	2.255	2.254	2.254	2.251	2.223	2.250	2.250	2.250	2.250	0.249	2.250	2.245
Thickness (in.)	0.2358	0.2325	0.2142	0.2390	0.2355	0.2401	0.2313	0.2366	0.2342	0.2445	0.2452	0.2301	0.2227	0.2285	0.2166	0.2263	0.2110	0.2176	0.2212	0.2097	0.2300	0.2279	0.2424	0.2435	0.2317	0.2413	0.2433	0.2450	0.2274	0.2424
Fastaner Torque (in1b)							den + n								100	9				0 + Gap				001	2				0 + Cap	
Test (=															
Fine Fine		•												42	 <u>{</u>															
Moisture Content (% by Wt), Initial														Z	<u> </u>															
Test Variable					:	Stacking															Torque	5								
Percent Q ³ /45 ⁹ /90 ⁹ Pies	50/40/10	Pane	No. 26				19/76/5	Pane	No. 31								50/40/10									19/76/5				
Specimen and Test Setup Configurations (See Figures)						47A, 52F									, 						47 676	976 'W/+					-			
Specimen	2-56-26	2-26-11	2-26-19	2-31-21	2-31-3	2.31-17	2-31-8	2.31-4	2-31-24	2-31-26	2:31-11	2-31-19	3-27-42	3-24-39	3-24-8	3.24.18	3-27-48	3-27-33	3-24-3	3-27-32	3-24-30	3-32-16	3-32-37	3-32-22	3-32-8	3-32-42	3-32-20	3-33-5	3-32-33	3-32-38
		-	d	L	<u></u> l		ليا	L	L I				ليسا	لــــا	<u> </u>	اا	L	لب >	E	(F)		<u></u>	E		L	لـــا				

TABLE 12. (Concluded) SPECTRUM FATIGUE TEST DATA

Notes:

Data in the initial column is the moisture content of the specimen after removal from humidity exposure. Data in the final column is the moisture content of the specimen after spectrum fatigue testing based upon traveler coupon moisture content data. "ND" indicates that no data was obtained. "RH" indicates that the traveler coupon was returned to humidity exposure after completion of testing resulting in an increase in moisture content. "NA" indicates that the specimens were not exposed.

Specimens tested at 250°F were at 250°F for 10 minutes prior to testing.

Loads were based upon selected percentages of the ultimate static tension strength.

Thickness and width dimensions were determined at the hole location. Dimensions for the humidity exposed specimens were determined prior to humidity exposure.

Dimension noted is the diameter of the hole prior to testing.

Flight hours to failure data were determined according to the following criteria: (H) = Testing stopped when total head deflection data, as determined by hysterisis loop data, approached or exceeded a preselected dimension. (N) = Testing stopped if failure did not occur after a preselected number of flight hours. (F) = Testing stopped when specimen exhibited complete failure during fatigue cycling.

Total head deflection data were determined from the final hysterisis loop generated for each specimen tested. Hysterisis loops were generated for each specimen at 1,000 flight hour-intervals. "D" in total head deflection column indicates that the deflection data noted was obtained from the incremental flight hours hysterisis loop generated immediately prior

Dimension noted is the major diameter of the elongated hole after shutdown of fatigue testing due to total head deflection data.

Mode of failure legend: (2) - (1) Implies a combination tension-cleavage-shearout mode of failure.

Shearout mode 00 and 900 plies 'pushed" out in front of bolt hole

(2) Tension-cleavage mode net section and shearout combination, Failure extends along shearout path and net section path

(3) Net section mode

(4) Bearing mode failure localized directly in front of bolt

Specimens were thermal spiked prior to testing.

Specimen test results were affected by various anomalies in the test procedures. Specimens affected by these anomalies and the particular anomaly were as follows: 3-24-3 - Wrong load range programmed into MTS resulting in overloading of specimen. 3-27-32 - Wrong load range programmed into MTS resulting in specimen failure due to overloading. 3-32-37 - Wrong load programmed into MTS after completion of generation of hysterisis loop at 12,000 flight hours. ecimen failed during startup after completion of generating hysterisis loop due to overloading. Specimen failed at ,325 pounds.

Specimens were tested using the "RS01" spectrum. P_{max} was 101% of TLL and P_{min} was -26.1% of TLL.

<u>/13\</u>

Specimen numbers 1-25-8. 1-25-4 and 1-25-24 were tested using a cyclic rate of 10 Hz. All other specimens were tested using a cyclic rate of 8 Hz.

Figure 59. Spectrum Fatigue Bearing and Bearing - Shearout Modes of Failure